Skip to main content

Formation of Massive Stars by Runaway Accretion

  • Chapter
  • First Online:
Experimental and Theoretical Advances in Fluid Dynamics

Part of the book series: Environmental Science and Engineering ((ESE))

  • 1483 Accesses

Abstract

Although massive stars play a dominant role in shaping galactic structure and evolution, their origin and early evolution are not well understood mainly because of the lack of a good observational guidance. One major conceptual problem in massive star formation arises from the radiation pressure they exert on the surrounding dust and gas, which could be strong enough to halt further accretion and impose a limit to the mass of a star. Radiation hydrodynamic collapse calculations of massive protostars have suggested an upper limit of ~40 \({M}_\odot\) before radiation pressure can exceed the star’s gravitational pull and block the infall of dusty gas. However, observational evidence for an upper mass limit near to 150 \({M}_\odot\) has been found in young massive clusters (>104 \({M}_\odot\)) in the Galactic Center. This cut-off seems to be unrelated to the heavy-element content of the star-forming gas, implying that radiation pressure may not be the physical mechanism that determines how massive stars can become. Here we find using frequency-dependent radiation transfer calculations, coupled to a frequency-dependent dust model, that stellar masses in excess of 100 \({M}_\odot\) may well form by runaway accretion in a collapsing, pressure-bounded logatrope. The radii and bolometric luminosities (~106 \({L}_\odot\)) of the produced stars are in good agreement with the figures reported for known candidates of massive stars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bally J, Zinnecker H (2005) The birth of high-mass stars: accretion and/or mergers? Astron J 129:2281–2293

    Article  CAS  Google Scholar 

  • Barniske A, Oskinova LM, Hamann W-R (2008) Two extremely luminous WN stars in the galactic center with circumstellar emission from dust and gas. Astron Astrophys 486:971–984

    Article  CAS  Google Scholar 

  • Behrend R, Maeder A (2001) Formation of massive stars by growing accretion rate. Astron Astrophys 373:190–198

    Article  Google Scholar 

  • Beltrán MT, Cesaroni R, Neri R, Codella C, Furuya RS, Testi L, Olmi L (2004) Rotating disks in high-mass young stellar objects. Astrophys J 601:L187–L190

    Article  Google Scholar 

  • Beuther H, Churchwell EB, McKee CF, Tan JC (2007) The formation of massive stars. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 165–180

    Google Scholar 

  • Bonnell IA, Bate MR, Zinnecker H (1998) On the formation of massive stars. Mon Not R Astron Soc 298:93–102

    Article  Google Scholar 

  • Cesaroni R (2005) Hot molecular cores. In: Cesaroni R, Felli M, Churchwell E, Walmsley M (eds) Massive star birth: a crossroads of astrophysics. Proceedings of IAU Symposium 227, Florence, Italy, 16–20 May 2004, pp 59–69

    Google Scholar 

  • Cesaroni R, Codella C, Furuya RS, Testi L (2003) Anatomy of a high-mass star forming cloud: the G24.78 + 0.08 (proto)stellar cluster. Astron Astrophys 401:227–242

    Article  CAS  Google Scholar 

  • Churchwell E (2002) Ultra-compact HII regions and massive star formation. Annu Rev Astron Astrophys 40:27–62

    Article  CAS  Google Scholar 

  • D’Antona F, Mazzitelli I (1994) New pre-main-sequence tracks for M ? 2.5 \({M}_\odot\) as tests of opacities and convection model. Astrophys J Suppl Ser 90:467–500

    Article  Google Scholar 

  • De Buizer JM (2004) High-resolution mid-infrared observations of high mass protostellar objects. In: Burton M, Jayawardhana R, Bourke T (eds) Star formation at high angular resolution. Proceedings of IAU Symposium 221, Sydney, Australia, 22–25 July 2003, pp 181–189

    Google Scholar 

  • Draine BT (1985) Tabulated optical properties of graphite and silicate grains. Astrophys J Suppl Ser 57:587–594

    Article  Google Scholar 

  • Figer DF (2003) Massive stars and the creation of our galactic center. In: van der Hucht K, Herrero A, Esteban C (eds) A massive star odyssey: From main sequence to supernova. Proceeings of IAU Symposium 212, Canary Island, Spain, 24–28 June 2001, pp 487–496

    Google Scholar 

  • Figer DF (2004) Young massive clusters in the galactic center. In: Lamers HJGLM, Smith LJ, Nota A (eds) The formation and evolution of massive young clusters. ASP Conference Series, San Francisco: ASP, 322:49–58

    Google Scholar 

  • Figer DF (2005) An upper limit to the masses of stars. Nature 434:192–194

    Article  CAS  Google Scholar 

  • Figer DF, Najarro F, Morris M, McLean IS, Geballe TR, Ghez AM, Langer N (1998) The Pistol star. Astrophys J 506:384–404

    Article  CAS  Google Scholar 

  • Figer DF, Kim SS, Morris M, Serabyn E, Rich RM, McLean IS (1999) Hubble space telescope/NICMOS observations of massive stellar clusters near the galactic center. Astrophys J 525:750–758

    Article  Google Scholar 

  • Figer DF, Najarro F, Gilmore D, Morris M, Kim SS, Serabyn E, McLean IS, Gilbert AM, Graham JR, Larkin JE, Levenson NA, Teplitz HI (2002) Massive stars in the Arches cluster. Astrophys J 581:258–275

    Article  Google Scholar 

  • Fontani F, Cesaroni R, Caselli P, Olmi L (2002) The structure of molecular clumps around high-mass young stellar objects. Astron Astrophys 389:603–617

    Article  CAS  Google Scholar 

  • Foster PN, Chevalier RA (1993) Gravitational collapse of an isothermal sphere. Astrophys J 416:303–311

    Article  Google Scholar 

  • Garay G, Lizano S (1999) Massive stars: their environment and formation. Publ Astron Soc Pac 111:1049–1087

    Article  Google Scholar 

  • Geballe TR, Najarro F, Figer DF (2000) A second luminous blue variable in the Quintuplet cluster. Astrophys J 530:L97–L101

    Article  Google Scholar 

  • Hatchell J, van der Tak FFS (2003) The physical structure of high-mass star-forming cores. Astron Astrophys 409:589–598

    Article  CAS  Google Scholar 

  • Jijina J, Adams FC (1996) Infall collapse solutions in the inner limit: radiation pressure and its effects on star formation. Astrophys J 462:874–887

    Article  Google Scholar 

  • Keto E (2003) The formation of massive stars by accretion through trapped hypercompact HII regions. Astrophys J 599:1196–1206

    Article  CAS  Google Scholar 

  • Keto E, Wood K (2006) Observations on the formation of massive stars by accretion. Astrophys J 637:850–859

    Article  CAS  Google Scholar 

  • Kippenhahn R, Weigert A (1990) Stellar structure and evolution. Springer, Heidelberg

    Book  Google Scholar 

  • Kroupa P (2002) The initial mass function of stars: evidence for uniformity in variable systems. Science 295:82–91

    Article  CAS  Google Scholar 

  • Krumholz MR, McKee CF, Klein RI (2005a) Bondi accretion in the presence of vorticity. Astrophys J 618:757–768

    Article  Google Scholar 

  • Krumholz MR, Klein RI, McKee CF (2005b) Radiation pressure in massive star formation. In: Cesaroni R, Felli M, Churchwell E, Walmsley M (eds) Massive star birth: A crossroads of astrophysics. Proceedings of IAU Symposium 227, Florence, Italy, 16–20 May 2004, pp 231–236

    Google Scholar 

  • Kurtz S, Cesaroni R, Churchwell E, Hofner P, Walmsley CM (2000) Hot molecular cores and the earliest phases of high-mass star formation. In: Mannings V, Boss AP, Russell SS (eds) Protostars and planets IV. University of Arizona Press, Tucson, pp 299–326

    Google Scholar 

  • Levermore CD, Pomraning GC (1981) A flux-limited diffusion theory. Astrophys J 248:321–334

    Article  Google Scholar 

  • Mathis JS, Rumpl W, Nordsieck KH (1977) The size distribution of interstellar grains. Astrophys J 217:425–433

    Article  CAS  Google Scholar 

  • McKee CF, Tan JC (2003) The formation of massive stars from turbulent cores. Astrophys J 585:850–871

    Article  CAS  Google Scholar 

  • McLaughlin DE, Pudritz RE (1996) A model for the internal structure of molecular cloud cores. Astrophys J 469:194–208

    Article  CAS  Google Scholar 

  • McLaughlin DE, Pudritz RE (1997) Gravitational collapse and star formation in logotropic and nonisothermal spheres. Astrophys J 476:750–765

    Article  Google Scholar 

  • Norberg P, Maeder A (2000) On the formation of massive stars by accretion. Astron Astrophys 359:1025–1034

    Google Scholar 

  • Osorio M, Lizano S, D’Alessio P (1999) Hot molecular cores and the formation of massive stars. Astrophys J 525:808–820

    Article  CAS  Google Scholar 

  • Osorio M, Anglada G, Lizano S, D’Alessio P (2009) Collapsing hot molecular cores: a model for the dust spectrum and ammonia line emission of the G31.41 + 0.31 hot core. Astrophys J 694:29–45

    Article  CAS  Google Scholar 

  • Pascucci I, Apai D, Henning T, Stecklum B, Brandl B (2004) The hot core-ultracompact HII connection in G10.47 + 0.03. Astron Astrophys 426:523–534

    Article  Google Scholar 

  • Persi P, Tapia M, Roth M, Marenzi AR, Testi L, Vanzi L (2003) Near and mid-infrared images of the massive star forming complex G9.62 + 0.19. Astron Astrophys 397:227–236

    Article  Google Scholar 

  • Pillai T, Wyrowski F, Menten KM, Krügel E (2006) High mass star formation in the infrared dark cloud G11.11-0.12. Astron Astrophys 447:929–936

    Article  CAS  Google Scholar 

  • Preibisch T, Ossenkopf V, Yorke HW, Henning T (1993) The influence of ice-coated grains on protostellar spectra. Astron Astrophys 279:577–588

    CAS  Google Scholar 

  • Rathborne JM, Simon R, Jackson JM (2007) The detection of protostellar condensations in infrared dark cloud cores. Astrophys J 662:1082–1092

    Article  Google Scholar 

  • Reid IN, Gizis JE, Hawley SL (2002) The Palomar/MSU nearby star spectroscopy survey. IV. The luminosity function in the solar neighborhood and M dwarf kinematics. Astron J 124:2721–2738

    Article  CAS  Google Scholar 

  • Schaller G, Schaerer D, Meynet G, Maeder A (1992) New grids of stellar models from 0.8 to 120 \({M}_\odot\) at Z = 0.020 and Z = 0.001. Astron Astrophys Suppl Ser 96:269–331

    Google Scholar 

  • Serabyn E, Shupe D, Figer DF (1998) An extraordinary cluster of massive stars near the centre of the Milky Way. Nature 394:448–451

    Article  CAS  Google Scholar 

  • Shu FH (1977) Self-similar collapse of isothermal spheres and star formation. Astrophys J 214:488–497

    Article  Google Scholar 

  • Sigalotti L Di G, de Felice F, Sira E (2002) Gravitational collapse of nonsingular logatropic spheres. Astron Astrophys 395:321–338

    Article  Google Scholar 

  • Sigalotti L Di G, de Felice F, Daza-Montero J (2009) Collapse of molecular cloud cores with radiation transfer: formation of massive stars by accretion. Astrophys J 707:1438–1448

    Article  Google Scholar 

  • van der Tak FFS (2004) Hot molecular cores and high mass star formation. In: Burton M, Jayawardhana R, Bourke T (eds) Star formation at high angular resolution. Proceeings of IAU Symposium 221, Sydney, Australia, 22–25 May 2003, pp 59–66

    Google Scholar 

  • Weidner C, Kroupa P (2003) Evidence for a fundamental stellar upper mass limit from clustered star formation. Mon Not R Astron Soc 348:187–191

    Article  Google Scholar 

  • Williams JP, Blitz L, McKee CF (2000) The structure and evolution of molecular clouds: from clumps to cores to the IMF. In: Mannings V, Boss AP, Russell SS (eds) Protostars and planets IV. University of Arizona Press, Tucson, pp 97–120

    Google Scholar 

  • Williams SJ, Fuller GA, Sridharan TK (2004) The circumstellar environments of high-mass protostellar objects. I. Submillimetre continuum emission. Astron Astrophys 417:115–133

    Article  CAS  Google Scholar 

  • Wolfire MG, Cassinelli JP (1987) Conditions for the formation of massive stars. Astrophys J 319:850–867

    Article  CAS  Google Scholar 

  • Wood DOS, Churchwell E (1989) Massive stars embedded in molecular clouds—their population and distribution in the galaxy. Astrophys J 340:265–272

    Article  Google Scholar 

  • Yorke HW, Sonnhalter C (2002) On the formation of massive stars. Astrophys J 569:846–862

    Article  Google Scholar 

  • Zinnecker H, Yorke HW (2007) Toward understanding massive star formation. Annu Rev Astron Astrophys 45:481–563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Di G. Sigalotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sigalotti, L.D.G., Klapp, J. (2012). Formation of Massive Stars by Runaway Accretion. In: Klapp, J., Cros, A., Velasco Fuentes, O., Stern, C., Rodriguez Meza, M. (eds) Experimental and Theoretical Advances in Fluid Dynamics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17958-7_5

Download citation

Publish with us

Policies and ethics