Skip to main content

Planar Electromagnetic Sensor for the Detection of Nitrate and Contamination in Natural Water Sources Using Electrochemical Impedance Spectroscopy Approach

  • Chapter

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 83))

Abstract

This paper highlights the progress of developing a low-cost system for detection of nitrate and contamination in natural water resources based on a planar electromagnetic sensor which consists of meander and interdigital structure. The sensor has been operated and evaluated using electrochemical impedance spectroscopy (EIS) approach, based on estimated electrical model; the results obtained from the experiments were interpreted. The objectives of the present work are to conduct simulation, experiments and analysis of a new nitrate detection method using novel planar electromagnetic sensors by means of electrochemical spectroscopy analysis. The sensor was tested with two aqueous solutions of nitrates forms namely, sodium nitrates (NaNO3) and ammonium nitrates (NH4NO3), each of different concentration between 5 mg and 20 mg dissolved in 1 litre of distilled water to observe their response. Furthermore, the sensor was tested with various kinds of prepared samples and natural water samples taken from natural sources around New Zealand. The simulation results using COMSOL have assisted in understanding the characteristic and response of the sensor to the change of properties in the aqueous solution. The experimental results have authenticated the results obtained from the simulation and show the sensor can well detect the presence of nitrate added in distilled water and distinguish the concentration level from the calculated sensitivities. The experiment results with the water sample taken from various places around New Zealand show a very good correlation of contamination level, translated from the qualitative and quantitative results. The work and improvement for future consideration are also discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hull, B., John, V.: Non-destructive testing (1988)

    Google Scholar 

  2. Mesina, M.B., de Jong, T.P.R., Dalmijn, W.L.: Automatic sorting of scrap metals with a combined electromagnetic and dual energy X-ray transmission sensor. International Journal of Mineral Processing 82(4), 222–232 (2007)

    Article  Google Scholar 

  3. Srinivasan, A.: Handbook of Precision Agriculture. The Haworth Press, New York (2006)

    Google Scholar 

  4. Schlicker, D., Washabaugh, A., Shay, I., et al.: Inductive and capacitive array imaging of buried objects. Insight 48(5), 302–306 (2006)

    Article  Google Scholar 

  5. Mohd Syaifudin, A.R., Jayasundera, K.P., Mukhopadhyay, S.C.: A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sensors and Actuators B: Chemical 137(1), 67–75 (2009)

    Article  Google Scholar 

  6. Mamishev, A.V., Sundara-Rajan, K., Yang, F., et al.: Interdigital sensors and transducers. In: Proceedings of the 2006 IEEE Sensors Applications Symposium, vol. 92(5), pp. 808–845 (May 2004)

    Google Scholar 

  7. Guadarrama-Santana, A., Garcia-Valenzuela, A.: Principles and Methodology for the Simultaneous Determination of Thickness and Dielectric Constant of Coatings With Capacitance Measurements. IEEE Transactions on Instrumentation and Measurement 56(1), 107–112 (2007)

    Article  Google Scholar 

  8. George, B., Zangl, H., Bretterklieber, T., et al.: A Combined Inductive-Capacitive Proximity Sensor and Its Application to Seat Occupancy Sensing. In: I2MTC-International Instrumentation and Measurement, Singapore, pp. 13–17 (2009)

    Google Scholar 

  9. Kirchner, N., Hordern, D., Liu, D.K., et al.: Capacitive sensor for object ranging and material type identification. Sensors and Actuators a-Physical 148(1), 96–104 (2008)

    Article  Google Scholar 

  10. Green House, H.M.: Design of Planar Rectangular Microelectronic Inductors. Ieee Transactions on Parts Hybrids and Packaging Ph10(2), 101–109 (1974)

    Article  Google Scholar 

  11. Hwang, H.Y., Yun, S.W., Chang, I.S.: A design of planar elliptic bandpass filter using SMD type partially metallized rectangular dielectric resonators. In: 2001 IEEE Mtt-S International Microwave Symposium Digest,, vol. 1-3, pp. 1483–1486 (2001)

    Google Scholar 

  12. Um, K., An, B.: Design of rectangular printed planar antenna via input impedance for supporting mobile wireless communications. In: Proceedings of IEEE 55th Vehicular Technology Conference, Vtc Spring 2002, vol. 1-4, pp. 948–951 (2002)

    Google Scholar 

  13. Yunas, J., Rahman, N.A., Chai, L.T., et al.: Study of coreless planar inductor at high operating frequency. In: Proceedings of 2004 IEEE International Conference on Semiconductor Electronics, pp. 606–610 (2004)

    Google Scholar 

  14. Fava, J., Ruch, M.: Design, construction and characterisation of ECT sensors with rectangular planar coils. Insight 46(5), 268–274 (2004)

    Article  Google Scholar 

  15. Quirarte, J.L., Silva, M.J.M., Palacios, M.S.R.: Software for analysis and design of rectangular planar arrays. In: 2004 1st International Conference on Electrical and Electronics Engineering (ICEEE), pp. 90–95 (2004)

    Google Scholar 

  16. Valderas, D., Melendez, J., Sancho, I.: Some design criteria for UWB planar monopole antennas: Application to a slotted rectangular monopole. Microwave and Optical Technology Letters 46(1), 6–11 (2005)

    Article  Google Scholar 

  17. Li, L.W., Li, Y.N., Mosig, J.R.: Design of a novel rectangular patch antenna with planar metamaterial patterned substrate. In: 2008 IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials - Conference Proceedings, pp. 119–122 (2008)

    Google Scholar 

  18. Oraizi, H., Noghani, M.T.: Design and Optimization of Linear and Planar slot Arrays on Rectangular Waveguides. In: 2008 European Microwave Conference, vol. 1-3, pp. 1468–1471 (2008)

    Google Scholar 

  19. Fava, J.O., Lanzani, L., Ruch, M.C.: Multilayer planar rectangular coils for eddy current testing: Design considerations. Ndt & E International 42(8), 713–720 (2009)

    Article  Google Scholar 

  20. Goldfine, N.J.: Magnetometers for Improved Materials Characterization in Aerospace Applications. Materials Evaluation 51(3), 396–405 (1993)

    Google Scholar 

  21. Goldfine, N.J., Clark, D.: Near-surface material property profiling for determination of SCC susceptibility. In: 4th EPRI Balance-of-Plant Heat Exchanger NDE Symp. (1996)

    Google Scholar 

  22. Yamada, S., Fujiki, H., Iwahara, M., et al.: Investigation of printed wiring board testing by using planar coil type ECT probe. IEEE Transactions on Magnetics 33(5), 3376–3378 (1997)

    Article  Google Scholar 

  23. Mukhopadhyay, S.C., Yamada, S., Iwahara, M.: Experimental determination of optimum coil pitch for a planar mesh-type micromagnetic sensor. IEEE Transactions on Magnetics 38(5), 3380–3382 (2002)

    Article  Google Scholar 

  24. Mukhopadhyay, S.C.: Quality inspection of electroplated materials using planar type micro-magnetic sensors with post-processing from neural network model. IEEE Proceedings-Science Measurement and Technology 149(4), 165–171 (2002)

    Article  Google Scholar 

  25. Mukhopadhyay, S.C.: A novel planar mesh-type microelectromagnetic sensor - Part 1: Model formulation. IEEE Sensors Journal 4(3), 301–307 (2004)

    Article  Google Scholar 

  26. Mukhopadhyay, S.C.: A novel planar mesh-type microelectromagnetic sensor - Part II: Estimation of system properties. IEEE Sensors Journal 4(3), 308–312 (2004)

    Article  Google Scholar 

  27. Mukhopadhyay, S.C.: High Performance Planar Electromagnetic Sensors-A Review of Few Applications, pp. 33–41

    Google Scholar 

  28. Mukhopadhyay, S.C.: Novel planar electromagnetic sensors: Modeling and performance evaluation. Sensors 5(12), 546–579 (2005)

    Article  Google Scholar 

  29. Sheiretov, Y., Grundy, D., Zilberstein, V., et al.: MWM-Array Sensors for In Situ Monitoring of High-Temperature Components in Power Plants. IEEE Sensors Journal 9(11), 1527–1536 (2009)

    Article  Google Scholar 

  30. AnimAppiah, K.D., Riad, S.M.: Analysis and design of ferrite cores for eddy-current-killed oscillator inductive proximity sensors. IEEE Transactions on Magnetics 33(3), 2274–2281 (1997)

    Article  Google Scholar 

  31. Karunanayaka, D., Gooneratne, C.P., Mukhopadhyay, S.C., Sen Gupta, G.: A Planar Electromagnetic Sensors Aided Non-destructive Testing of Currency Coins. NDT.net 11(10) (September 2006)

    Google Scholar 

  32. Sundara-Rajan, K., Byrd, L., Mamishev, A.V.: Moisture content estimation in paper pulp using fringing field impedance Spectroscopy. IEEE Sensors Journal 4(3), 378–383 (2004)

    Article  Google Scholar 

  33. Radke, S.M., Alocilja, E.C.: Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sensors Journal 4(4), 434–440 (2004)

    Article  Google Scholar 

  34. Sekiguchi, N., Komeda, T., Funakubo, H., et al.: Microsensor for the measurement of water content in the human skin. Sensors and Actuators B-Chemical 78(1-3), 326–330 (2001)

    Article  Google Scholar 

  35. Furjes, P., Kovacs, A., Ducso, C., et al.: Porous silicon-based humidity sensor with interdigital electrodes and internal heaters. Sensors and Actuators B-Chemical 95(1-3), 140–144 (2003)

    Article  Google Scholar 

  36. Radke, S.M., Alocilja, E.C.: A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sensors Journal 5(4), 744–750 (2005)

    Article  Google Scholar 

  37. Mukhopadhyay, S.C., Gooneratne, C.P., Demidenko, S., et al.: Low Cost Sensing System for Dairy Products Quality Monitoring. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference, IMTC 2005, vol. 1, pp. 244–249 (May 2005)

    Google Scholar 

  38. Mukhopadhyay, S.C., Sen Gupta, G., Woolley, J.D., et al.: Saxophone reed inspection employing planar electromagnetic sensors. IEEE Transactions on Instrumentation and Measurement 56(6), 2492–2503 (2007)

    Article  Google Scholar 

  39. Mukhopadhyay, S.C., Gooneratne, C.P.: A novel planar-type biosensor for noninvasive meat inspection. IEEE Sensors Journal 7(9-10), 1340–1346 (2007)

    Article  Google Scholar 

  40. Yunus, M.A.M., Kasturi, V., Mukhopadhyay, S.C., et al.: Sheep skin property estimation using a low-cost planar sensor. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference, I2MTC 2009, pp. 482–486 (May 2009)

    Google Scholar 

  41. Ong, K.G., Grimes, C.A., Robbins, C.L., et al.: Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor. Sensors and Actuators a-Physical 93(1), 33–43 (2001)

    Article  Google Scholar 

  42. Ong, K.G., Wang, J., Singh, R.S., et al.: Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing. Biosensors & Bioelectronics 16(4-5), 305–312 (2001)

    Article  Google Scholar 

  43. Ong, K.G., Bitler, J.S., Grimes, C.A., et al.: Remote query resonant-circuit sensors for monitoring of bacteria growth: Application to food quality control. Sensors 2(6), 219–232 (2002)

    Article  Google Scholar 

  44. Hofmann, M.C., Kensy, F., Buchs, J., et al.: Transponder-based sensor for monitoring electrical properties of biological cell solutions. Journal of Bioscience and Bioengineering 100(2), 172–177 (2005)

    Article  Google Scholar 

  45. Tan, E.L., Ng, W.N., Shao, R., et al.: A wireless, passive sensor for quantifying packaged food quality. Sensors 7(9), 1747–1756 (2007)

    Article  Google Scholar 

  46. Ong, J.B., You, Z.P., Mills-Beale, J., et al.: A Wireless, Passive Embedded Sensor for Real-Time Monitoring of Water Content in Civil Engineering Materials. IEEE Sensors Journal 8(11-12), 2053–2058 (2008)

    Article  Google Scholar 

  47. Sharavanan, B., Jung-Rae, P., Tarisha, M., et al.: Conformal Passive Sensors for Wireless Structural Health Monitoring. In: Material Research Society Symposia Proceeding, pp. 341–348

    Google Scholar 

  48. Vorosmarty, C.J., Green, P., Salisbury, J., et al.: Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 289(5477), 284–288 (2000)

    Article  Google Scholar 

  49. http://www.unep.org/dewa/assessments/ecosystems/water/vitalwater/10.htm

  50. http://www.grid.unep.ch/product/publication/freshwater_europe/ecosys.php

  51. http://www.nzinstitute.org/index.php/nzahead/measures/water_quality/

  52. Metcalf, N.F., Metcalf, W.K., Wang, X.: The Differing Sensitivities of the Hemoglobin of Fetal and Adult Red-Cells to Oxidation by Nitrites in Man - the Role of Plasma. Journal of Physiology-London 407, P44 (1988)

    Google Scholar 

  53. Donald, L.P., Charles, D.F.: Water Quality for Livestock Drinking. MU Extension Publication, University of Missouri-Columbia, vol. EQ 381, pp. 1–4 (2001)

    Google Scholar 

  54. Reichard, J., Brown, C.: Detecting groundwater contamination of a river in Georgia, USA using baseflow sampling. Hydrogeology Journal 17(3), 735–747 (2009)

    Article  Google Scholar 

  55. Terblanche, A.P.S.: Health hazards of nitrate in drinking water. Water Sa 17(1), 77–82 (1991)

    Google Scholar 

  56. Ward, M.H., Kilfoy, B.A., Weyer, P.J., et al.: Nitrate Intake and the Risk of Thyroid Cancer and Thyroid Disease. Epidemiology 21(3), 389–395 (2010)

    Article  Google Scholar 

  57. Di, H.J., Cameron, K.C.: Nitrate leaching losses and pasture yields as affected by different rates of animal urine nitrogen returns and application of a nitrification inhibitor - a lysimeter study. Nutrient Cycling in Agroecosystems 79(3), 281–290 (2007)

    Article  Google Scholar 

  58. Di, H.J., Cameron, K.C.: Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems 64(3), 237–256 (2002)

    Article  Google Scholar 

  59. Stanley, E.M.: Fundamental of Environmental Chemistry, 3rd edn. CRC Press, Taylor and Francis Group, Boca Raton (2009)

    Google Scholar 

  60. http://www.reopure.com/nitratinfo.html

  61. Hassan, S.S.M.: Ion-selective electrodes in organic functional group analysis. Microdetermination of nitrates and nitramines with use of the iodide electrode. Talanta 23(10), 738–740 (1976)

    Article  MathSciNet  Google Scholar 

  62. Bartzatt, R., Donigan, L.: The colorimetric determination of nitrate anion in aqueous and solid samples utilizing an aromatic derivative in acidic solvent. Toxicological & Environmental Chemistry 86(2), 75–85 (2004)

    Article  Google Scholar 

  63. Monteiro, M.I.C., Ferreira, F.N., de Oliveira, N.M.M., et al.: Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Analytica Chimica Acta 477(1), 125–129 (2003)

    Article  Google Scholar 

  64. Cho, S.-J., Sasaki, S., Ikebukuro, K., et al.: A simple nitrate sensor system using titanium trichloride and an ammonium electrode. Sensors and Actuators B: Chemical 85(1-2), 120–125 (2002)

    Article  Google Scholar 

  65. Ferree, M.A., Shannon, R.D.: Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Research 35(1), 327–332 (2001)

    Article  Google Scholar 

  66. Gumede, N.J.: Harmonization of internal quality tasks in analytical laboratories case studies: water analysis methods using polarographic and voltammetric techniques. Faculty of Applied Sciences, Durban University of Technology, Durban (2008)

    Google Scholar 

  67. Maria Dolores, F.-R., et al.: The use of one-shot sensors with a dedicated portable electronic radiometer for nitrate measurements in aqueous solutions. Measurement Science and Technology 19(9), 95204 (2008)

    Article  Google Scholar 

  68. Downes, M.T.: An improved hydrazine reduction method for the automated determination of low nitrate levels in freshwater. Water Research 12(9), 673–675 (1978)

    Article  Google Scholar 

  69. http://www.mfe.govt.nz/publications/ser/technical-guide-new-zealand-environmental-indicators/html/page4-12.html

  70. Connolly, D., Paull, B.: Rapid determination of nitrate and nitrite in drinking water samples using ion-interaction liquid chromatography. Analytica Chimica Acta 441(1), 53–62 (2001)

    Article  Google Scholar 

  71. Kjær, T., Hauer Larsen, L., Revsbech, N.P.: Sensitivity control of ion-selective biosensors by electrophoretically mediated analyte transport. Analytica Chimica Acta 391(1), 57–63 (1999)

    Article  Google Scholar 

  72. Bendikov, T.A., Harmon, T.C.: A Sensitive Nitrate Ion-Selective Electrode from a Pencil Lead. An Analytical Laboratory Experiment. Journal of Chemical Education 82(3), 439–441 (2005)

    Article  Google Scholar 

  73. Moorcroft, M.J., Davis, J., Compton, R.G.: Detection and determination of nitrate and nitrite: a review. Talanta 54(5), 785–803 (2001)

    Article  Google Scholar 

  74. Md Yunus, M.A., Mukhopadhyay, S.C.: Novel planar electromagnetic sensors for detection of nitrates and contamination in natural water sources. IEEE Sensors Journal (accepted for publication September 24, 2010)

    Google Scholar 

  75. Md Yunus, M.A., Mukhopadhyay, S.C., Sen Gupta, G.: A new planar electromagnetic sensor for quality monitoring of water from natural sources. In: 4th International Conference on Sensing Technology, ICST 2010, June 3-5, pp. 554–559 (2010)

    Google Scholar 

  76. COMSOL AC/DC Module, User’s Guide, Version 3.5a (November 2008)

    Google Scholar 

  77. Stafford, O.A., Hinderliter, B.R., Croll, S.G.: Electrochemical impedance spectroscopy response of water uptake in organic coatings by finite element methods. Electrochimica Acta 52(3), 1339–1348 (2006)

    Article  Google Scholar 

  78. Light, T.S., Licht, S., Bevilacqua, A.C., et al.: The fundamental conductivity and resistivity of water. Electrochemical and Solid State Letters 8(1), E16–E19 (2005)

    Google Scholar 

  79. McNamara, C.J., Breuker, M., Helms, M., et al.: Biodeterioration of Incralac used for the protection of bronze monuments. Journal of Cultural Heritage 5(4), 361–364 (2004)

    Article  Google Scholar 

  80. Cano, E., Lafuente, D., Bastidas, D.M.: Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review. Journal of Solid State Electrochemistry 14(3), 381–391 (2010)

    Article  Google Scholar 

  81. Tan, Y.J., Bailey, S., Kinsella, B.: An investigation of the formation and destruction of corrosion inhibitor films using electrochemical impedance spectroscopy (EIS). Corrosion Science 38(9), 1545–1561 (1996)

    Article  Google Scholar 

  82. Itagaki, M., Taya, A., Watanabe, K., et al.: Deviations of Capacitive and Inductive Loops in the Electrochemical Impedance of a Dissolving Iron Electrode. Analytical Sciences 18(6), 641–644 (2002)

    Article  Google Scholar 

  83. Grahame, D.C.: The Electrical Double Layer and the Theory of Electrocapillarity. Chemical Reviews 41(3), 441–501 (1947)

    Article  Google Scholar 

  84. Jeyaprabha, C., Sathiyanarayanan, S., Muralidharan, S., et al.: Corrosion inhibition of iron in 0.5 mol L-1 H2SO4 by halide ions. Journal of the Brazilian Chemical Society 17, 61–67 (2006)

    Article  Google Scholar 

  85. Ravichandran, R., Nanjudan, S., Rajendran, N.: Corrosion inhibition of brass by benzotriazole derivatives in NaCl solution, Bradford. ROYAUME-UNI, Emerald (2005)

    Google Scholar 

  86. Karunanayaka, D.: Studies of Magnetic Filtration Techniques to Purify Potable Water and Waste Water. School of Engineering and Advanced Technology, Massey University, New Zealand, Palmerston North (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yunus, M.A.M., Mukhopadhyay, S.C. (2011). Planar Electromagnetic Sensor for the Detection of Nitrate and Contamination in Natural Water Sources Using Electrochemical Impedance Spectroscopy Approach. In: Mukhopadhyay, S.C., Lay-Ekuakille, A., Fuchs, A. (eds) New Developments and Applications in Sensing Technology. Lecture Notes in Electrical Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17943-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17943-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17942-6

  • Online ISBN: 978-3-642-17943-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics