Skip to main content

Multi-spectral Analytical Systems Using LIBS and LII Techniques

  • Chapter

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 83))

Abstract

In this paper, we propose an advanced approach to particle analysis, involving laser-induced breakdown spectroscopy (LIBS) and laser-induced incandescence (LII) temporal analytical techniques. Various technical properties of fine particles are analyzed via LIBS and LII. LIBS is a useful tool for determining the elemental composition and relative concentration of various materials, whereas LII facilitates the measurement of particle size. Both techniques do not require any pre-processing. The combined use of the LIBS and LII techniques enables highly synergistic fine particle measurement. In the LIBS section, we propose spectrometric analysis via a novel ink-jet technique, and we discuss the effectiveness of Ar as a surrounding gas. In the LII section, we compare the calculated particle size prediction with the experimental results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreev, A., Ueda, T.: Simulation of laser plasma emission characteristics of small solid particles in different gas atmospheres at various pressures. Trans. IEE of Japan 121-E(11), 593–598 (2001)

    Google Scholar 

  2. Wakamatsu, M., Ikezawa, S., Ueda, T.: Particle element and size simultaneous measurement using LIBS. IEEJ Transactions on Sensors and Micromachines 127(9), 397–402 (2007)

    Article  Google Scholar 

  3. Ikezawa, S., Wakamatsu, M., Pawlat, J., Ueda, T.: Sensing System for Multiple Measurements of Trace Elements Using Laser-induced Breakdown Spectroscopy. IEEJ Transactions on Sensors and Micromachines 129(4), 115–119 (2009)

    Article  Google Scholar 

  4. Brown, J.H., Cook, K.M., Ney, F.G., Hatch, T.: Influence of Particle Size upon the Retention of Particulate Matter in the Human Lung. American Journal of Public Health Nations Health, 450–458 (1950)

    Google Scholar 

  5. Kodavanti, U.P., Schladweiler, M.C., Ledbetter, A.D., Watkinson, W.P., Campen, M.J., Winsett, D.W., Richards, J.R., Crissman, K.M., Hatch, G.E., Costa, D.L.: The Spontaneously Hypertensive Rat as a Model of Human Cardiovascular Disease: Evidence of Exacerbated Cardiopulmonary Injury and Oxidative Stress from Inhaled Emission Particulate Matter. Toxicology and Applied Pharmacology 164(3), 250–263 (2000)

    Article  Google Scholar 

  6. Squadrito, G.L., Rafael, C., Dellinger, B., Pryor, W.A.: Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radical Biology and Medicine 31(9), 1132–1138 (2001)

    Article  Google Scholar 

  7. Carll, A.P., Haykal-Coates, N., Winsett, D.W., Rowan III, W.H., Hazari, M.S., Ledbetter, A.D., Nyska, A., Cascio, W.E., Watkinson, W.P., Costa, D.L., Farraj, A.K.: Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy. Inhalation Toxicology, 1–14 (2010)

    Google Scholar 

  8. Eckbreth, A.C.: Effects of Laser-Modulated Particulate Incandescence on Raman Scattering Diagnostics. Journal of Applied Physics 48, 4473–4479 (1977)

    Article  Google Scholar 

  9. Melton, L.A.: Soot Diagnostics Based on Laser Heating. Applied Optics 23, 2201–2208 (1984)

    Article  Google Scholar 

  10. Jenkins, T.P., Bartholomew, J.L., DeBarber, P.A., Yang, P., Seitzman, J.M., Howard, R.P.: Laser Induced Incandescence for Soot Concentration Measurements in Turbine Engine Exhausts. In: AIAA paper 2002-0828 (2002)

    Google Scholar 

  11. Michelsen, H.A.: Understanding and Predicting the Temporal Response of Laser-induced Incandescence from Carbonaceous Particles. Journal of Chemical Physics 118, 7012–7045 (2003)

    Article  Google Scholar 

  12. McCoy, B.J., Cha, C.Y.: Transport phenomena in the rarefied gas transition regime. Chemical Engineering Science 29(2), 381–388 (1974)

    Article  Google Scholar 

  13. Wu, C.H., Mszanowski, U., Martin, J.M.L.: The impact of larger clusters formation C5, C6, C7, C8, C9, and C10 on the rates of carbon sublimation at elevated temperatures. Journal of Nuclear Materials 258-263(Part 1), 782–786 (1998)

    Article  Google Scholar 

  14. Arepalli, S., Scott, C.D., Nikolaev, P., Smalley, R.E.: Electronically excited C2 from laser photodissociated C60. Chemical Physics Letters 320(1-2), 26–34 (2000)

    Article  Google Scholar 

  15. Vietzke, E., Refke, A., Philipps, V., Hennes, M.: Energy distributions and yields of sputtered C2 and C3 clusters. Journal of Nuclear Materials 241-243, 810–815 (1997)

    Google Scholar 

  16. Philipps, V., Vietzke, E., Flaskamp, K.: Sticking probabilities of evaporated C1, C2 and C3 on pyrolytic graphite. Surface Science 178(1-3), 806–812 (1986)

    Article  Google Scholar 

  17. Brewer, L., Kane, J.S.: The Importance of Complex Gaseous Molecules in High Temperature Systems. The Journal of Physical Chemistry 59(2), 105–109 (1955)

    Article  Google Scholar 

  18. Bukatyi, V.I., Zhdanov, E.P., Shaiduk, A.M.: Combustion of aerosol particles in an electromagnetic field. Combustion, Explosion, and Shock Waves 18(3), 309–312 (1982)

    Article  Google Scholar 

  19. Konno, T.J., Sinclair, R.: Crystallization of amorphous carbon in carbon—cobalt layered thin films. Acta Metallurgica et Materialia 43(2), 471–484 (1995)

    Article  Google Scholar 

  20. Marcos, P.A., López, M.J., Rubio, A., Alonso, J.A.: Thermal road for fullerene annealing. Chemical Physics Letters 273(5-6), 367–370 (1997)

    Article  Google Scholar 

  21. Samsonidze, G.G., Samsonidze, G.G., Yakobson, B.I.: Kinetic Theory of Symmetry-Dependent Strength in Carbon Nanotubes. Physical Review Letters 88(6), (065501-1) – (065501-4) (2002)

    Google Scholar 

  22. Banhart, F., Füller, T., Redlich, P., Ajayan, P.M.: The formation, annealing and self-compression of carbon onions under electron irradiation. Chemical Physics Letters 269(3-4), 349–355 (1997)

    Article  Google Scholar 

  23. Wang, B.-C., Wang, H.-W., Chang, J.-C., Tso, H.-C., Chou, Y.-M.: More spherical large fullerenes and multi-layer fullerene cages. Journal of Molecular Structure: THEOCHEM 540(1-3), 171–176 (2001)

    Article  Google Scholar 

  24. Atamny, F., Bloecker, J., Henschke, B., Schloegl, R., Schedel-Niedrig, T., Keil, M., Bradshaw, A.M.: Reaction of oxygen with graphite: x-ray absorption spectroscopy of carbonaceous materials. The Journal of Physical Chemistry 96, 4522–4526 (1992)

    Article  Google Scholar 

  25. Fried, L.E., Howard, W.M.: Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Physical Review B 61(13), 8734–8743 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ikezawa, S., Wakamatsu, M., Zimin, Y.L., Pawlat, J., Ueda, T. (2011). Multi-spectral Analytical Systems Using LIBS and LII Techniques. In: Mukhopadhyay, S.C., Lay-Ekuakille, A., Fuchs, A. (eds) New Developments and Applications in Sensing Technology. Lecture Notes in Electrical Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17943-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17943-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17942-6

  • Online ISBN: 978-3-642-17943-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics