Skip to main content

Networked Data Fusion with the Asynchronous Observations at Multiple Rates

  • Chapter
Analysis and Synthesis of Networked Control Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 409))

  • 1024 Accesses

Abstract

Most of the earlier works are based on the measurements observed by sensors with synchronous samples at the same sampling rate [10, 20, 23, 28, 39]. Only a few pieces of work deal with asynchronous multirate multisensor data fusion. Based on continuous time systems, Alouani with his group [4] and Bar-Shalom et al. [10, 8] present some effective algorithms for asynchronous multisensor systems. As far as the discrete time systems are concerned, the related researches include the approaches based on multiscale system theory [72, 11, 12, 195, 211, 226], the batch process methods [104], and the algorithms based on the designing of multirate filter banks [42], etc. In the literature listed above, the missing of observations is rarely concerned, which is inclined to encounter in many application fields including communication, navigation, etc. For filtering of incomplete measurements, there are some interesting results. Among these, the algorithms presented by the team of Wang are promising that it has proper computation complexity and can generate nearly optimal state estimate [194]. Based on a discrete-time linear dynamic system, Kalman filtering with intermittent observations is studied in [169], where the arrival of the observations is modeled as a random process, and the statistical convergence property of Kalman filter is given. The modified Riccati equation is studied by Boers and his group [15]. Some useful results are presented as far as a single sensor observing a single target which is described by a linear state space model is concerned. Kalman filtering with faded measurements is studied in [173]. By use of peak covariance as an estimate of filtering deterioration caused by packet losses, the stability of Kalman filtering with Markovian packet losses is studied in [81] based on a linear time-invariant system. Bar-Shalom studies the state estimation with out of sequence measurements based on a time-invariant dynamic system [8]. Xia, Shang, Chen and Liu study the networked data fusion with packet losses and variable delays, and an optimal state estimate is generated [206]. However, in all these interesting papers, multirate systems are not concerned. The multi-rate linear minimum mean squared error state estimation problem is solved by use of the lifting technique [99]. While, asynchronous sampling and data losses are not concerned in this reference. To sum up, there are few results on the fusion of multirate sensors that sample asynchronously with measurements randomly missing. This motivates us for the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xia, Y., Fu, M., Liu, GP. (2011). Networked Data Fusion with the Asynchronous Observations at Multiple Rates. In: Analysis and Synthesis of Networked Control Systems. Lecture Notes in Control and Information Sciences, vol 409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17925-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17925-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17924-2

  • Online ISBN: 978-3-642-17925-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics