Skip to main content

Fly Ash

  • Chapter
  • First Online:
Supplementary Cementing Materials

Part of the book series: Engineering Materials ((ENG.MAT.,volume 37))

Abstract

 The fly ash, also known as pulverised fuel ash, is produced from burning pulverized coal in electric power generating plants. During combustion, mineral impurities in the coal (clay, feldspar, quartz, and shale) fuse in suspension and float out of the combustion chamber along with exhaust gases. As the fused material rises, it cools and solidifies into spherical glassy particles called fly ash. It is a fine-grained, powdery particulate material that is collected from the exhaust gases by electrostatic precipitators or bag filters. Depending upon the collection system, varying from mechanical to electrical precipitators or bag houses and fabric filters, approximately 85–99% of the ash from the flue gases in retrieved in the form of fly ash. Fly ash accounts for 75–85% of the total coal ash, and the remainder is collected as bottom ash or boiler slag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ACI committee 211.1.81 (1984) Standard Practice for Selecting Proportions for Normal, Heavy Weight and Mass Concrete. ACI Manual of Concrete Practice

    Google Scholar 

  2. ACI committee 226 3R-87: Fly ash in concrete. ACI Mater. J. 11, 381–409 (1987)

    Google Scholar 

  3. Alonso, J.L., Wesche, K.: Characterization of Fly Ash. Fly Ash in Concrete, Properties and Performance, pp. 3–23, RILEM Report, E & FN Spon, New York (1992)

    Google Scholar 

  4. Andrade, C.: Effect of fly ash in concrete on the corrosion of steel reinforcement. ACI SP 91, pp. 609–620 (1986)

    Google Scholar 

  5. ASTM C 618: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete. Annual Book of ASTM Standards, Philadelphia (1993)

    Google Scholar 

  6. Atis, C.D.: Heat evolution of high-volume fly ash concrete. Cem. Concr. Res. 32(5), 751–756 (2002)

    Article  CAS  Google Scholar 

  7. Atis, C.D.: Accelerated carbonation and testing of concrete made with fly ash. Construct. Build. Mater. 17(3), 147–152 (2003)

    Article  Google Scholar 

  8. Atis, C.D., Kilic, A., Korkut, U.: Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash. Cem. Concr. Res. 34(1), 99–102 (2004)

    Article  CAS  Google Scholar 

  9. Atis, C.D.: Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cem. Concr. Res. 35(6), 1112–1121 (2005)

    Article  Google Scholar 

  10. Attiogbe, E.K., Rizkalla, S.H.: Response of concrete to sulfuric acid attack. ACI Mater. J. 84(6), 481–488 (1988)

    Google Scholar 

  11. Aydin, S., Yazici, H., Yiğiter, H., Baradan, B.: Sulfuric acid resistance of high-volume fly ash concrete. Build. Environ. 42(2), 717–721 (2007)

    Article  Google Scholar 

  12. Bamforth, P.B.: In situ measurement of the effect of partial cement replacement using either fly ash or ground granulated blast furnace slag on the performance of mass concrete. Proc. Instit. Civil Eng. 69, 777–800 (1980)

    Google Scholar 

  13. Bamforth, P.B.: The water permeability of concrete and its relationship with strength. Mag. Concr. Res. 43(137), 233–241 (1991)

    Article  CAS  Google Scholar 

  14. Bilodeau, A., Malhotra, V.M.: Concrete incorporating high volumes of ASTM Class F fly ashes: mechanical properties and resistance to deicing salt scaling and to chloride-ion penetration. ACI Special Publication SP, 132, pp. 319–349 (1992)

    Google Scholar 

  15. Brown, J.H.: The strength and workability of concrete with PFA substitution. In: Proceedings International Symposium on the Use of PFA in Concrete, pp. 151–161, University of Leeds, England (1982)

    Google Scholar 

  16. Burns, J.S., Guarnaschelli, C., McAskill, J.: No controlling the effect of carbon in fly ash on air entrainment. In: Proceedings, Sixth International Symposium on Fly Ash Utilization, pp. 294–313, Reno, Nevada, DOE/METC (1982)

    Google Scholar 

  17. Buttler, F.G., Dector, M.H., Smith, G.R.: Studies on the desiccation and carbonation of systems containing Portland cement and fly ash. ACI SP 79(1), 367–383 (1983)

    Google Scholar 

  18. Cabrera, J.G., Lynsdale, C.J.: A new gas permeameter for measuring the permeability of mortar and concrete. Mag. Concr. Res. 40(144), 177–182 (1988)

    Article  CAS  Google Scholar 

  19. Carette, G.G., Malhotra, V.M.: Characterization of Canadian fly Ashes and their Performance in Concrete. Division report MRP/MSL 84-137, CANMET, Energy, Mines and Resources, Canada (1984)

    Google Scholar 

  20. Carette, G.G., Malhotra, V.M.: Characterization of Canadian fly ashes and their relative performance in concrete. Can. J. Civil Eng. 14(5), 667–682 (1987)

    Article  Google Scholar 

  21. Chalee, W., Teekavanit, M., Kiattikomol, K., Siripanichgorn, A., Jaturapitakkul, C.: Effect of W/C ratio on covering depth of fly ash concrete in marine environment. Construct. Build. Mater. 21(5), 965–971 (2007)

    Article  Google Scholar 

  22. Chindaprasirt, P., Chotithanorm, C., Cao, H.T., Sirivivatnanon, V.: Influence of fly ash fineness on the chloride penetration of concrete. Construct. Build. Mater. 21(2), 356–361 (2007)

    Article  Google Scholar 

  23. Central Electricity Generating Board (CEGB) (1967) PFA data book. London

    Google Scholar 

  24. Compton, F.R., Macinnis, C.: Field trial of fly ash concretes. Ontario Hydro Research News, pp. 18–21 (1952)

    Google Scholar 

  25. Cook, J.E.: Research and application of high strength concrete using class C fly ash. Concr. Int. 4, 72–80 (1982)

    CAS  Google Scholar 

  26. Crow, R.D., Dunstan, E.R.: Properties of fly ash concrete. In: Diamond, S. (ed.) Proceedings of Symposium on Fly Ash Incorporation in Hydrated Cement Systems, pp. 214–225. Materials Research Society, Boston (1981)

    Google Scholar 

  27. Demirboğa, R.: Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 42(7), 2467–2471 (2007)

    Article  Google Scholar 

  28. Demirboğa, R., Türkmen, I., Karakoc, M.B.: Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build. Environ. 42(1), 349–354 (2007)

    Article  Google Scholar 

  29. Diamond, S.: Effects of two Danish fly ashes on alkali—contents of cement—fly ash pastes. Cement. Concr. Res. 11(3), 383–394 (1981)

    Article  CAS  Google Scholar 

  30. Diamond, S.: Selection and use of fly ash for high way concrete. Joint Highway Research Project, Purdue University, Indiana (1985)

    Google Scholar 

  31. Dhir, R.K., Hewlett, P.C., Chan, Y.N.: Near-surface characteristics of concrete: abrasion resistance. Mater. Struct. 24(2), 122–128 (1991)

    Article  CAS  Google Scholar 

  32. Dunstan, E.R.: Performance of lignite and sub-bituminous fly ash in concrete. A progress report REC-ERC-76-1, USBR (1976)

    Google Scholar 

  33. Dunstan, E.R.: A possible method for identifying fly ashes that—will improve sulfate resistance of concretes. ASTM Cem. Concr. Aggreg. 2, 20–30 (1980)

    CAS  Google Scholar 

  34. Dunstan, E.R.: The effect of fly ash on concrete alkali–aggregate reaction. ASTM Cem. Concr. Aggreg. 3, 101–104 (1981)

    CAS  Google Scholar 

  35. Electric Power Research Institute.: Classification of fly ash for use in cement and concrete. CS-5116, Project 2422-10. Palo Alto, California 94304, USA (1987)

    Google Scholar 

  36. Ellis, WE Jr, Rigs, E.H., Butler, W.B.: Comparative results of utilization of fly ash, silica fume and GGBS in reducing the chloride permeability of concrete. In: Proceedings of the 2nd CANMET/ACI International Conference on Durability of Concrete, Montreal, Canada. ACI SP 126(1), 443–457 (1991)

    Google Scholar 

  37. Erdoğdu, K., Türker, P.: Effects of fly ash particle size on strength of Portland cement fly ash mortars. Cement. Concr. Res. 28(9), 1217–1222 (1998)

    Article  Google Scholar 

  38. Fay, K.F.V., Pierce, J.S.: Sulfate resistance of concretes with various fly ashes. ASTM standardisation news, pp. 32–37 (1989)

    Google Scholar 

  39. Gebauer, J.: Source observations on the carbonation of fly ash concrete. Silic. Ind. 6, 155–159 (1982)

    Google Scholar 

  40. Gebler, S.H., Klieger, P.: Effect of fly ash on the air void stability of concrete. In: Proceedings of the 1st International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral by Products in Concrete. ACI SP-79, pp. 103–142 (1983)

    Google Scholar 

  41. Ghosh, R.S., Timusk, J.: Creep of fly ash Concrete. ACI J. 78(5), 351–387 (1981)

    Google Scholar 

  42. Gifford, P.M., Langan, B.W., Day, R.L., Joshi, R.C., Ward, M.A.: A study of fly ash concrete in curb and gutter construction under various laboratory and field curing regimes. Can. J. Civil Eng. 14(5), 614–620 (1987)

    Article  Google Scholar 

  43. Gopalan, M.K.: Sorptivity of fly ash concretes. Cem. Concr. Res. 26(8), 1189–1197 (1996)

    Article  CAS  Google Scholar 

  44. Haque, M.N., Langan, B.W., Ward, M.A.: High fly ash concretes. ACI Mater. 8(1), 54–60 (1988)

    Google Scholar 

  45. Helmuth, A.R.: Fly ash in cement and concrete. Special Publication 040, p. 203. Portland Cement Association, Skokie, IL (1987)

    Google Scholar 

  46. Ho, D.W.S., Lewis, R.K.: Carbonation of concrete incorporating fly ash or a chemical admixture. ACI SP 79, 333–346 (1983)

    CAS  Google Scholar 

  47. Hobbs, D.W.: The alkali–silica reaction: a model for predicting expansion in mortar. Mag. Concr. Res 33(117), 208–220 (1981)

    Article  CAS  Google Scholar 

  48. Hui-sheng, S., Bi-wan, X., Xiao-chen, Z.: Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Construct. Build. Mater. 23(5), 1980–1985 (2009)

    Article  Google Scholar 

  49. Idorn, G.M.: Concrete durability and resource economy. Concr. Int. 13(7), 18–23 (1991)

    CAS  Google Scholar 

  50. IS: 1237: Method for testing abrasion resistance of concrete. Bureau of Indian Standards (BIS), New Delhi, India (1980)

    Google Scholar 

  51. Jawed, I., Skalny, J.: Hydration of tricalcium silicate in the presence of fly ash. Effects of fly ash incorporation in cement and concrete. In: Diamond, S. (ed.) Proceedings Symposium, pp. 60–70. Materials Research Society, (1981)

    Google Scholar 

  52. Jiang, L., Liu, Z., Ye, Y.: Durability of concrete incorporating large volumes of low-quality fly ash. Cem. Concr. Res. 34(8), 1467–1469 (2004)

    Article  CAS  Google Scholar 

  53. Joshi, R.C.: Experimental production of synthetic fly ash from kaolinite. MS Thesis, Iowa State University (1970)

    Google Scholar 

  54. Joshi, R.C.: Sources of pozzolanic activity in fly ashes—a critical review. In: Proceedings of the 5th International Fly Ash Utilization Symposium, pp. 610–623, Atlanta, GA, USA (1979)

    Google Scholar 

  55. Joshi, R.C.: Effect of a sub-bituminous fly ash and its properties on sulfate resistance of sand cement mortars. J. Durab. Build. Mater. 4, 271–286 (1987)

    CAS  Google Scholar 

  56. Joshi, R.C., Lam, D.T.: Sources of self-hardening properties of fly ashes. Materials research proceedings, vol 86, pp. 183–184. MRS. Pittsburgh (1987)

    Google Scholar 

  57. Joshi, R.C., Lohtia, R.P.: Effects of premature freezing temperatures on compressive strength, elasticity and microstructure of high volume fly ash concrete. Third Canadian Symposium on Cement and Concrete, Ottawa, Canada (1993)

    Google Scholar 

  58. Joshi, R.C., Lohtia, R.P, Salam, M.A.: High strength concrete with high volumes of Canadian sub-bituminous coal ash. Third International Symposium on Utilization of High Strength Concrete, Lillachammer, Norway (1993)

    Google Scholar 

  59. Joshi, R.C., Lohtia, R.P., Salam, M.A.: Some durability related properties of concretes incorporating high volumes of sub-bituminous coal fly ash. In: Proceedings, 3rd CANMET/ACI International Conference on Durability of Concrete, Nice, France, pp. 447–464 (1994)

    Google Scholar 

  60. Kasai, Y., Matsui, I., Fukushima, U., Kamohara, H.: Air permeability of blended cement mortars. In: Proceedings of the 1st t International Conference on the use of Fly ash, Silica-fume, Slag and other mineral by-products in concrete. ACI SP 29, 435–451 (1983)

    Google Scholar 

  61. Khan, M.I.: Rheological characteristics of HPC containing composite cementitious materials. Concr. Technol. J. Concr. Plant Int. No. 02/10, Germany, pp. 78–84 (2010)

    Google Scholar 

  62. Khan, M.I.: Permeation of high performance concrete. J. Mater. Civil Eng. 15(1), 84–92 (2002)

    Article  Google Scholar 

  63. Klieger, P., Perenchio, W.F.: Laboratory studies of blended cement: portland-pozzolan cements. Research and Development Bulletin RD013, Portland cement Association, USA (1972)

    Google Scholar 

  64. Kokubu, M., Nagataki, S.: Carbonation of concrete with fly ash and corrosion of reinforcement in 20-years tests. ACI Special publications CS- 114, 315–329 (1989)

    CAS  Google Scholar 

  65. Korac, V., Ukraincik, V.: Studies into the use of fly ash in concrete for water dam structures. ACI Special Publication SP- 79, 173–185 (1983)

    CAS  Google Scholar 

  66. Lane, R.O., Best, J.F.: Properties and use of fly ash in Portland cement concrete. Concr. Int. 4(7), 81–92 (1982)

    CAS  Google Scholar 

  67. Langan, B.V., Joshi, R.C., Ward, M.A.: Strength and durability of concrete containing 50 percent Portland cement replacement by fly ash and other materials. Can. J. Civil Eng. 17(1), 19–27 (1990)

    Article  Google Scholar 

  68. Langley, W.S., Carette, G.G., Malhotra, V.M.: Structural concrete incorporating high volumes of ASTM class F fly ash. ACI Mater. J. 86(5), 507–514 (1989)

    CAS  Google Scholar 

  69. Larsen, T.D.: Use of fly ash in structural concrete in Florida, Presented at fly ash in high way construction seminar, Altanta, GA (1985)

    Google Scholar 

  70. Liu, T.C.: Abrasion resistance of concrete. ACI J. Proc. 78(5), 341–350 (1981)

    CAS  Google Scholar 

  71. Lohtia, R.P., Nautiyal, B.D., Jain, O.P.: Creep of fly ash concrete. ACI J. 73(8), 469–472 (1976)

    Google Scholar 

  72. Lohtia, R.P., Nautiyal, B.D., Jain, K.K., Jain, O.P.: Compressive strength of plain and fly ash concrete by non-destructive testing methods. J. Instit. Eng. (India) 58a-1:40–45 (1977)

    Google Scholar 

  73. Majko, R.M., Pistilli, M.F.: Optimizing the amount of Class C fly ash in concrete mixtures. Cem. Concr. Aggreg. CCAGDP 6(2), 105–119 (1984)

    CAS  Google Scholar 

  74. Malhotra, V.M., Carette, G.G., Bremmer, T.W.: Durability of concrete containing granulated blast furnace slag or fly ash or both in Marine environment, report 80-18E, CANMET, EMR, Canada (1982)

    Google Scholar 

  75. Malhotra, V.M., Caratte, G.G., Bilodeau, A., Sivasundram, V.: Some aspects of durability of high volume ASTM class F (Low-calcium) fly ash concrete. Mineral Sciences Laboratories, Division report MSL-90-20 (OP & J) (1990)

    Google Scholar 

  76. McCarthy, G.J., Johansen, D.M., Steinwand, S.J.: X-ray diffraction analysis of fly ash. In: Barrett, C.S., et al. (eds.) Advances in X-Ray Analysis, vol 31. Plenum Press, New York (1988)

    Google Scholar 

  77. McCarthy, M.J., Dhir, R.K.: Development of high volume fly ash cements for use in concrete construction. Fuel 84(11), 1423–1432 (2005)

    Article  CAS  Google Scholar 

  78. Mehta, P.K.: Pozzolanic and cementitious by-products as mineral admixtures for concrete—a critical review. In: Proceedings of the 1st International Conference on the use of Fly Ash, Slag and Silica fume in Concrete, pp. 1–46, Montebello, Canada, ACI SP-79 (1983)

    Google Scholar 

  79. Mehta, P.K.: Concrete: structure, properties and materials. Prentice Hall, Englewood Cliffs (1986)

    Google Scholar 

  80. Mehta, P.K.: Standard specifications for mineral admixtures—an overview. ACI SP 91, 637–658 (1988)

    Google Scholar 

  81. Mehta, P.K.: Sulfate Attack on concrete—a critical review. In: J. Skalny (ed.) Materials science of concrete-III. American Ceramic Society, pp 105–130 (1993)

    Google Scholar 

  82. Mehta, P.K.: In: Khayat, I.H., Aitcin, P.C. (eds.) Symposium on durability of concrete, pp. 99–118. Nice, France, (1994)

    Google Scholar 

  83. Munday, J.G.L., Ong, L.T., Wong, L.G., Dhir, R.K.: Load independent movements in OPC/PFA concrete. In: Cabreva, J.A., Cusens R.R. (eds.) Proceedings, International Symposium on the use of PFA in concrete, pp. 243–246, University of Leeds, England (1982)

    Google Scholar 

  84. Nagataki, S., Ohga, H., Kim, E.K.: Effect of curing conditions on the carbonation of concrete with fly ash and the corrosion of reinforcement in long term basic. ACI SP 91, 521–540 (1986)

    Google Scholar 

  85. Nagataki, S., Ohga, H.: Combined effect of carbonation and chloride on corrosion of reinforcement in fly ash concrete. In: Proceedings 4th International Conference on the Use of Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, vol. 32, pp. 227–244. Istanbul, Turkey, ACI SP1 (1992)

    Google Scholar 

  86. Naik, T.R., Singh, S.S., Hossain, M.M.: Permeability of concrete containing large amounts of fly ash. Cem. Concr. Res. 24(5), 913–922 (1994)

    Article  CAS  Google Scholar 

  87. Naik, T.R., Singh, S.S., Hossain, M.M.: Abrasion resistance of high-strength concrete made with class C fly ash. ACI Mater. J. 92(6), 649–659 (1995)

    CAS  Google Scholar 

  88. Naik, T.R., Singh, S.S., Ramme, B.W.: Mechanical properties and durability of concrete made with blended fly ash. ACI Mater. J. 95(4), 454–462 (1998)

    CAS  Google Scholar 

  89. Nanni, A.: Abrasion resistance of roller-compacted concrete. ACI Mater. J. 86(53), 559–565 (1989)

    CAS  Google Scholar 

  90. Nasser, K.W., Marzouk, H.M.: Properties of concrete made with sulfate resisting cement and fly ash. In: Proceedings First International Conference on the use of Fly ash, Silica Fume, slag and other mineral by-products in concrete, pp. 383–395. ACI SP-79 (1983)

    Google Scholar 

  91. Nasser, K.W., Al-Manasser, A.A.: Shrinkage and creep of concrete containing 50 percent lignite fly ash at different stress–strength ratios. In: Proceedings of the 2nd International Conference on Fly ash, Silica fume, Slag and Natural Pozzolans in concrete, ACI SP-91(1), pp 433–448 (1986)

    Google Scholar 

  92. Neville, A.M.: Properties of Concrete, 2nd edn. Wiley, New York (1973). 382 p

    Google Scholar 

  93. Oberholster, R.E., Westra, W.B.: The effectiveness of mineral admixtures in reducing expansion due to alkali–aggregate reaction with malmesbury group aggregate. In: Proceedings of the 5th International Conference on Alkali–Aggregate Reaction in Concrete, Cape Town, South Africa (1981)

    Google Scholar 

  94. Ogawa, K., Uchikawa, H., Takemoto, K., Yasui, I.: The mechanism of the hydration in the system CS-pozzolana. Cem. Concr. Res. 10(5), 683–696 (1980)

    Article  CAS  Google Scholar 

  95. Ozer, B., Ozkul, M.H.: The influence of initial water curing on the strength development of ordinary Portland and pozzolanic cement concretes. Cem. Concr. Res. 34(1), 13–18 (2004)

    Article  CAS  Google Scholar 

  96. Owens, P.L.: Fly ash and its usage in concrete. Concr. Soc. J. 13(7), 21–26 (1979)

    CAS  Google Scholar 

  97. Pepper, L., Mather, B.: Effectiveness of mineral admixtures in preventing excessive expansion of concrete due to alkali–aggregate reaction. Proc. ASTM 59, 1178–1202 (1959)

    Google Scholar 

  98. Perencho, W.F., Klieger, P.: Further laboratory studies of Portland-pozzolan cements. Portland Cement Research and Development Bulletin RD041.01T (1976)

    Google Scholar 

  99. Perry, C., Day, R.L., Joshi, R.C., Langan, B.W., Gillot, J.E.: The effectiveness of twelve Canadian fly ashes in suppressing expansion due to alkali–silica reaction. In: Proceedings of the 7th International Conference on Alkali–Aggregate Reaction, Ottawa, pp. 93–97 (1987)

    Google Scholar 

  100. Prunsinski, J.R., Carrasquillo, R.L.: Factors affecting the sulfate resistance of concrete made with class C fly ash. In: Proceedings 11th International Symposium on Use and management of Coal Combustion By-Products (CCBs), American Coal Ash Association, Alexandria, Virginia, pp. 29-1-29-14 (1995)

    Google Scholar 

  101. Raba, F. Jr., Smith, S.L., Mearing, M.: Sub bituminous fly ash utilization in concrete. In: Diamond, D. (ed.) Proceedings Symposium on Fly Ash Incorporation on Hyderated Cement Systems, pp. 296–306. Materials Research Society, Boston (1981)

    Google Scholar 

  102. Ramakrishan, V., Coyle, W.V., Brown, J., Tluskus, A., Benkataramanyam, P.: Performance characteristics of concrete containing fly ash. In: Diamond, S. (ed.) Proceedings Symposium on Fly Ash Incorporation in Hydrated Cement Systems, pp. 233–243. Materials Research Society, Boston (1981)

    Google Scholar 

  103. Ravina, D.: Efficient utilization of coarse and fine fly ash in precast concrete by incorporating thermal curing. ACI J. 78(3), 194–200 (1981)

    CAS  Google Scholar 

  104. RILEM CP113: Absorption of water by immersion under vacuum. Material Structures Research Testing 101, 393–394 (1984)

    Google Scholar 

  105. Rodway, L.E., Fedriko, W.M.: Superplasticized high volume fly ash structural concrete. ACI SP 114(1), 98–112 (1989)

    Google Scholar 

  106. Roy, D.M., Luke, K., Diamond, S.: Characterization of fly ash and its reactions in concrete. Proceedings of the Materials Research Society, Pittsburgh, Pennsylvania (1984)

    Google Scholar 

  107. Saraswathy, V., Muralidharan, S., Thangavel, K., Srinivasan, S.: Influence of activated fly ash on corrosion–resistance and strength of concrete. Cem. Concr. Compos. 25(7), 673–680 (2003)

    Article  CAS  Google Scholar 

  108. Schiepl, P., Hardtle, R.: Relationship between durability and fore structure properties of concretes containing fly ash. In: Khayat, I.H., Aitcin, P.C. (eds.) P.K. Mehta Symposium on Durability of Concrete, pp. 99–118, Nice, France (1994)

    Google Scholar 

  109. Schmidt, M.: Cement with inter-ground additives—capabilities and environmental relief. Part 2. Zement-Kalk Gips (1992)

    Google Scholar 

  110. Schubert, P.: Carbonation behaviors of mortars and concretes made with fly ash. ACI Special Publications SP- 100, 1945–1962 (1987)

    Google Scholar 

  111. Shafiq, N., Cabrera, J.G.: Effects of initial curing condition on the fluid transport properties in OPC and fly ash blended cement concrete. Cem. Concr. Compos. 26(4), 381–387 (2004)

    Article  CAS  Google Scholar 

  112. Siddique, R.: Effect of fine aggregate replacement with class F fly ash on the mechanical properties of concrete. Cem. Concr. Res. 33(4), 539–547 (2003)

    Article  CAS  Google Scholar 

  113. Siddique, R.: Effect of fine aggregate replacement with class F fly ash on the abrasion resistance of concrete. Cem. Concr. Res. 33(11), 877–1881 (2003)

    Article  Google Scholar 

  114. Sivasundram, V., Carette, G.G., Malhotra, V.M.: Properties of concrete incorporating low quantity of cement and high volumes of low-calcium fly ash. In: Proceedings of the 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, ACI SP-114, pp. 45–71 (1989)

    Google Scholar 

  115. Sivasundram, V., Carette, G.G., Malhotra, V.M.: Selected properties of high volume fly ash concretes. ACI Concrete International, pp. 47–50 (1990)

    Google Scholar 

  116. Stanton, T.E.: Expansion of concrete through reaction between cement and aggregate. Trans. ASCE Part 2, 68–85 (1942)

    Google Scholar 

  117. Swamy, R.N., Mahmud, H.B.: Mix proportions and strength characteristics of concrete containing 50 percent low-calcium fly ash. In: Proceedings of the 2nd CANMET/ACI International Conference on Fly ash, Silica Fume, Slag and Natural pozzolans in Concrete, ACI SP-91, 1: 413–432 (1986)

    Google Scholar 

  118. Takemoto, K., Uchikawa, H.: Hydration of pozzolanic cement. 7th International Congress on the Chemistry of Cement, Paris, I IV-2/1-2/29 (1980)

    Google Scholar 

  119. Tattersall, G.H., Benfill, P.F.G.: The Rheology of Fresh Concrete. Pitman, London (1983)

    Google Scholar 

  120. Taylor, H.W.F.: Cement Chemistry. Academic Press, New York (1990)

    Google Scholar 

  121. Termkhajornkit, P., Nawa, T., Kurumisawa, K.: Effect of water curing conditions on the hydration degree and compressive strengths of fly ash–cement paste. Cem. Concr. Compos. 28(9), 781–789 (2006)

    Article  CAS  Google Scholar 

  122. Thomas, M.D.A., Matthews, J.D.: The permeability of fly ash concrete. Mater. Struct. 25(151), 388–396 (1992)

    Article  CAS  Google Scholar 

  123. Tikalsky, P.J., Carrasquillo, P.M., Carrasquillo, R.L.: Strength and durability considerations affecting mix proportions of concrete containing fly ash. ACI Mater. J. 85(6), 505–511 (1988)

    CAS  Google Scholar 

  124. Virtanen, J.: Freeze–thaw resistance of concrete containing blast furnace slag, fly ash or condensed silica fume. In: Proceedings of the 1st International Conference on the use of Fly ash, Silica Fume, Slag and other mineral by-products, ACI SP-79: 923–942 (1983)

    Google Scholar 

  125. William, J.T., Owens, P.L.: The implications of a selected grade of United Kingdom pulverized fuel ash on the engineering design and use in structural concrete. In: Proceedings of the International Symposium on the Use of PFA in Concrete, pp. 301–313. University of Leeds, England (1982)

    Google Scholar 

  126. Yazici, H., Aydin, S., Yiğiter, H., Baradan, B.: Effect of steam curing on class C high-volume fly ash concrete mixtures. Cem. Conc. Res. 35(6), 1122–1127 (2005)

    Article  CAS  Google Scholar 

  127. Yazici, Ş.G., İnan, G.: An investigation on the wear resistance of high strength concretes. Wear 260(6), 615–618 (2006)

    Google Scholar 

  128. Yen, T., Hsu, T.H., Liu, Y.W., Chen, S.h: Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete. Construct. Build. Mater. 21(2), 458–463 (2007)

    Article  Google Scholar 

  129. Yuan, R.L., Cook. J.E.: Study of class C fly ash in concrete. In: Proceeding of the 1st International Conference on the use of Fly ash, Silica Fume, Slag, and other mineral by-products in concrete, ACI SP-79, pp. 307–319 (1983)

    Google Scholar 

  130. Yuan, R.Z., Jin, S.X., Qian, J.C.: Effects of fly ash on rheology of fresh cement paste. Materials and Research Society Symposium Proceedings, pp. 182–191 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafat Siddique .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siddique, R., Iqbal Khan, M. (2011). Fly Ash. In: Supplementary Cementing Materials. Engineering Materials, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17866-5_1

Download citation

Publish with us

Policies and ethics