Skip to main content
Book cover

PET/CT-Atlas pp 633–728Cite as

Kopf-Hals-Region

  • Chapter
  • 3247 Accesses

Zusammenfassung

Einleitung Kopf-Hals-Tumoren und CUP-Syndrom zählen zu den dankbarsten Aufgaben der onkologischen PET/ CT-Diagnostik. Seit 1999 waren diese ein Präferenzkollektiv in Frankfurt/Main. In den Krebsstatistiken spiegelt sich ein kontinuierlicher Inzidenzanstieg wider. Zervikale Lymphknoten sind bevorzugter Drainageort von Metastasen. Für die Lokalisation von PET-Befunden sollte das Kompartimentmuster berücksichtigt werden (Tab. 9.1).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adamietz IA, Schemmann F, Baum RP, Knecht R, Saran F, Mose S, Thilmann C, Hör G, Böttcher HD (1995) Wertigkeit der SPECT-Immunszintigraphie für die Bestrahlungsplanung bei Patienten mit Plattenepithelkarzinomen im HNO-Bereich. Strahlenther Onkol 171: 278–283

    PubMed  CAS  Google Scholar 

  2. Adams S, Baum RP, Hertel A, Schumm-Dräger PM, Usadel KH, Hör G (1996) Ganzkörper Fluor-18-Fluordeoxyglucose (FDG)-PET zum Nachweis okkulter metastasierter Schilddrüsenkarzinome. In: Reichwein D, Weinheimer B (Hrsg) De Gruyter, S 520–526

    Google Scholar 

  3. Adams S, Baum RP, Hertel A, Schumm-Dräger PM, Usadel KH, Hör G (1998) Comparison of metabolic and receptor imaging in recurrent medullary thyroid carcinoma with histopathological findings. Eur J Nucl Med 25: 1277–1283

    Article  PubMed  CAS  Google Scholar 

  4. Adams S, Baum RP, Stuckensen T, Bitter K, Hör G (1998) Prospective comparison of FDG PET with conventional imaging modalities CT, MRI, US in lymph node staging of head and neck cancer. Eur J Nucl Med 25: 1255–1260

    Article  PubMed  CAS  Google Scholar 

  5. Adams S, Nickel E, Hör G (2000) Differentialdiagnostische Problematik bei der Beurteilung von mediastinalen und pulmonalen Herden mittels F-18-FDG (Kasuistik). Nuklearmedizin 5: N83–N84

    Google Scholar 

  6. Adams S, Acker P, Lorenz M, Staib-Sebler E, Hör G (2001) Radioisotope-guided surgery in patients with pheochromocytoma and recurrent medullary thyroid carcinoma. Cancer 92: 263–270

    Article  PubMed  CAS  Google Scholar 

  7. Adams S, Baum RP, Knecht R, Hör G (2001) Staging und Rezidivdiagnostik von Tumoren im Kopf-Hals-Bereich. Der Nuklearmediziner 24: 47–54

    Google Scholar 

  8. Alkureishi LWT, Burak Z, Alvarez JA et al. (2009) Joint practice guidelines for radionuclide lymphoscintigraphy for sentinel node localization in oral/oropharyngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 37: 1915

    Article  Google Scholar 

  9. Allal AS, Dulguerov P, Allaoua M, al (2002) Standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 42: 1398–1404

    Article  Google Scholar 

  10. Avril N, Dose J, Jänicke F, Ziegler S et al. (1996) Assessment of axillary lymphnode involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-D-glucose. J Nat Cancer Inst 88: 1204–1209

    Article  PubMed  CAS  Google Scholar 

  11. Bar-Shalom R, Gaitini D, Keidar Z, Israel O (2004) Non-malignant FDG uptake in infradiaphragmatic adipose tissue: a new site of physiological tracer biodistribution charcterized by PET/CT. Eur J Nucl Med Mol Imaging 31: 1105–1113

    Article  PubMed  CAS  Google Scholar 

  12. Behr TM, Gratz S, Herrmann A et al. (1997) Anti-CEA-Antikörper versus Somatostatin-Analoga zur Detektion metastasierter medullärer Schilddrüsen-Karzinome: Sind CEA- und Somatostatin-Rezeptor-Expression prognostische Faktoren? Nuklearmedizin 36: A62

    Google Scholar 

  13. Belhocine T, Blockmans D, Hustinx R et al. (2003) Imaging of large vessel vasculitis with (18)FDG PET. Illusion or reality? A critical review. Eur J Nucl Med 30: 1305–1313

    Article  Google Scholar 

  14. Blumstein NM, Reske SN (2004) PET und PET/CT bei Kopf-Hals-Tumoren. Der Nuklearmediziner 27: 260–271

    Article  Google Scholar 

  15. Branstetter BF, Blodgett TM, Zimmer LA et al. (2005) Head and neck malignancy: Is PET/CT more accurate than PET or CT alone? Radiology 235: 580–586

    Article  PubMed  Google Scholar 

  16. Charron M, Beyer Th, Bohnen NN et al. (2000) Image analysis in patients with cancer studied with a combined PET and CT scanner. Lippincott Williams & Wilkins, Philadelphia, S 905–910

    Google Scholar 

  17. Chen Y, Su C, Ding H et al. (2006) Clinical usefulness of fused PET/CT compared with PET alone or CT alone in nasopharyngeal carcinoma patients. Anticancer Res 26: 1471–1477

    PubMed  Google Scholar 

  18. Chung J (2002) Sodium iodide symporter: Its role in Nuclear Medicine. J Nucl Med 43: 1188–1200

    PubMed  CAS  Google Scholar 

  19. Chung JK, Kang JH (2004) Translational research using the sodium/iodide symporter in imaging and therapy. Eur J Nucl Med Mol Imaging 31: 799–802

    Article  PubMed  Google Scholar 

  20. Cobben DC, van der Laan BF, Hoekstra HJ et al. (2002) Detection of mammary, laryngeal and soft tissue tumors with FLT-PET. J Nucl Med 43: P278

    Google Scholar 

  21. Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379: 458–460

    Article  PubMed  CAS  Google Scholar 

  22. Davies JR, Rudd JH, Weissberg PL (2004) Molecular and metabolic imaging of atherosclerosis. J Nucl Med 45: 1898–1907

    PubMed  CAS  Google Scholar 

  23. Delgado-Bolton RC, Fernández-Pérez C et al. (2003) Meta-analysis of the performance of 18F-FDG PET in primary tumor detection in unknown primary tumors. J Nucl Med 44: 1301–1314

    PubMed  Google Scholar 

  24. Deutsche Krebsgesellschaft (2002) Kurzgefaßte Interdisziplinäre Leitlinien. 3. Auflage

    Google Scholar 

  25. Erdi YE, Larson SM (2002) PET/CT scanners improve cancer treatment planning. Diagnostic Imaging Nov: 11–12

    Google Scholar 

  26. Fischbein NJ, Novorolski SM, Henry RG et al. (2003) Assessment of metastatic cervical adenopathy using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol 24: 301–311

    PubMed  Google Scholar 

  27. Flower MA, Al-Saadi A, Harmer CL, McCready VR, Ott RJ (1994) Dose-response study on thyrotoxic patients undergoing positron emission tomography and radioiodine therapy. Eur J Nucl Med 21: 531–536

    Article  PubMed  CAS  Google Scholar 

  28. Gabriel M, Decristoforo C, Kendler D et al. (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48: 508–518

    Article  PubMed  CAS  Google Scholar 

  29. Gitsch E (1970) Die Radioisotopenoperation in der Gynäkologie. Wiener Klin Woch 42/43: 727–730

    Google Scholar 

  30. Goerres GW, von Schulthess GK, Hany TF (2002) Positron Emission Tomography and PET CT of the head and neck: FDG uptake in normal anatomy, in benign lesions, and in changes resulting from treatment. Am J Roentgenol 179: 1337–1343

    Google Scholar 

  31. Goerres GW, von Schulthess GK, Steinert HC (2004) Why most PET of lung and head neck cancer will be PET/CT. J Nucl Med 45 (Suppl 1): 66S–71S

    PubMed  Google Scholar 

  32. Goerres GW, Schmid DT, Schuknecht B, Eyrich GK (2005) Bone invasion in patients with oral cavity cancer: comparison of conventional CT with PET/CT and SPECT/CT. Radiology 237: 281–287

    Article  PubMed  Google Scholar 

  33. Gordin A, Daitzchman M, Doweck I et al. (2006) Fluordeoxyglucose positron emission tomography/computed tomography imaging in patients with carcinoma of the larynx: diagnostic accuracy and impact on clinical management. Laryngoscope 116: 273–278

    Article  PubMed  Google Scholar 

  34. Haberkorn U, Strauss LG, Reisser Chet al. (1991) Glucose uptake, perfusion, and cell proliferation in head and neck tumors: relation of positron emission tomography to flow cytometry. J Nucl Med 32: 1548–1555

    PubMed  CAS  Google Scholar 

  35. Hauth E, Antoch G, Freudenberg LS et al. (2003) Einsatz der PETCT und Ganzkörper-MRT bei Patienten mit Karzinom ohne gesicherten Primärtumor (CUP-Syndrom). Fortschr Röntgenstr. http://www.thieme.de/roefo/abs

  36. Heath JR, Phelps ME, Hood L (2003) Nano systems biology. Mol Imaging Biol 5: 312–325

    Article  PubMed  Google Scholar 

  37. Heufelder AE, Joba W (2001) Der Natrium-Jodid-Symporter in der Diagnostik und Therapie von Schilddrüsenerkrankungen. Der Nuklearmediziner 24: 117–127

    Google Scholar 

  38. Hilson AWJ, Lewis CA (1991) Radionuclide studies in impotence. Semin Nucl Med 21: 159–164

    Article  PubMed  CAS  Google Scholar 

  39. Hör G, Maul FD, Standke R, Munz D (1981) Scintigraphy in oncology-review on present, outlook on further possibilities: 201 TlCl. IAEA, Vienna, S 487–495

    Google Scholar 

  40. Ito S, Kato K, Ikeda M et al. (2007) Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med 48: 889–885

    Article  PubMed  CAS  Google Scholar 

  41. Jemal A, Murray T, Ward E (2005) Cancer Statistics 2005. CA Cancer J Clin 55: 10–30

    Article  PubMed  Google Scholar 

  42. Kim H, Boyd J, Dunphy F, Lowe V (1998) F-18 FDG PET scan after radiotherapy for early-stage larynx cancer. Clin Nucl Med 11: 750–752

    Article  Google Scholar 

  43. Kim SY, Roh J, Kim M et al. (2007) Use of 18F-FDG for primary treatment strategy in patients with squamous cell carcinoma of the oropharynx. J Nucl Med 48: 752–757

    Article  PubMed  Google Scholar 

  44. Kluetz PG, Meltzer CC, Villemagne VL et al. (2000) Combined PET/CT imaging in oncology: impact on patient management. Clin Positron Imag 3: 223–230

    Article  Google Scholar 

  45. Kouvaraki MA, Shapiro SE, Fornage BD et al. (2003) Role of preoperative ultrasonography in surgical management of patients with thyroid cancer. Surgery 134: 946–954

    Article  PubMed  Google Scholar 

  46. Lan X, Zhang Y, Tan X et al. (2009) Role of 18F-FDG PET/CT in following-up patients with nasopharyngeal carcinoma after therapy. Springer Berlin: 0P371, S229

    Google Scholar 

  47. Lardinois D, Weder W, Hany TF et al. (2003) Staging of nonsmall cell lung cancer with integrated positron emission tomography and computed tomography. N Engl J Med 348: 2500– 2507

    Article  PubMed  Google Scholar 

  48. Lowe VJ, Kim H, Boyd JH et al. (1999) Primary and recurrent early stage laryngeal cancer: preliminary results of 2-[fluorine 18]fluoro-2-deoxy-D-glucose PET imaging. Radiology 212: 799–802

    PubMed  CAS  Google Scholar 

  49. Lowe VJ, Boyd JH, Dunohy FR et al. (2000) Surveillance for recurrent head and neck cancer using positron emission tomography. J Clin Oncol 18: 651–658

    PubMed  CAS  Google Scholar 

  50. Mazzaferri EL (2005) Empirically treating high serum thyreoglobulin levels. J Nucl Med 46: 1079–1088

    PubMed  Google Scholar 

  51. Mazzaferri EL, Kloos RT (2002) Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab 87: 1490–1498

    Article  PubMed  CAS  Google Scholar 

  52. Miehel K, Paschke R (2004) Molekulargenetik und molekulare Diagnostik bei Schilddrüsenerkankungen. Nuklearmediziner 27: 120–122

    Article  Google Scholar 

  53. Minn H, Paul R, Ahonen A (1988) Evaluation of treatment response to radiotherapy in head and neck cancer with fluorine-18 fluorodeoxyglucose. J Nucl Med 29: 1521–1525

    PubMed  CAS  Google Scholar 

  54. Muhle C, Brenner W, Südmeyer M et al. (2004) CT-guided lymphoscintigraphy in patients with squamous cell carcinoma of the head and neck: a feasibility study. Eur J Nucl Med Mol Imaging 31: 940–944

    Article  PubMed  Google Scholar 

  55. Munz DL (2001) The sentinel lymph node concept in oncology. Zuckschwerdt, München

    Google Scholar 

  56. Munz DL, Maza S, Ivancevic V, Geworski L (2000) Classification of the lymphatic drainage status of a primary tumor: a proposal. Nuklearmedizin 39: 88–91

    PubMed  CAS  Google Scholar 

  57. Nakamoto Y, Tatsumi M, Hammoud D et al. (2005) Normal FDG distribution pattern in head and neck: PET/CT evaluation. Radiology 234: 879–885

    Article  PubMed  Google Scholar 

  58. Ng SH, Chang JT, Chan S et al. (2004) Nodal metastases of nasopharyngeal carcinoma: patterns of disease on MRI and FDG PET. Eur J Nucl Med Mol Imaging 31: 1073–1180

    Article  PubMed  Google Scholar 

  59. Ng SH, Yen TC, Liao CT et al. (2005) 18F-FDG PET and CT/MRI in oral cavity squamous cell carcinoma: a prospective study of 124 patients with histologic correlation. J Nucl Med 46: 1136– 1143

    PubMed  Google Scholar 

  60. Niu G, Gaut AW, Boles Ponto LL et al. (2004) Multimodality noninvasive imaging of gene transfer using the human sodium iodide symporter. J Nucl Med 43: 445–449

    Google Scholar 

  61. Oehler W, Baum RP (2004) Aktueller Beitrag der PET und PET/CT zur Zielvolumenmodulation für die biologisch-medizinische Planung im Rahmen der intensitätsmodulierten Strahlentherapie (IMRT). Der Nuklearmediziner 27: 324–329

    Article  Google Scholar 

  62. Ott RJ, Batty V, Webb S, Flower MA et al. (1987) Measurement of radiation dose to the thyroid using positron emission tomography. J Radiol 60: 245–251

    Article  CAS  Google Scholar 

  63. Pauleit D, Zimmermann A, Stoffels G et al. (2006) 18F-FET PET compared with 18F-FDG PET and CT in patients with head and neck cancer. J Nucl Med 47: 256–261

    PubMed  Google Scholar 

  64. Paulus P, Sambon A, Vivegnis D et al. (1998) 18F-FDG PET for the assessment of primary head and neck tumors: clinical, computed tomography, and histopathological correlation in 38 patients. Laryngoscope 108: 578–583

    Article  Google Scholar 

  65. Regelink G, Brouwer J, de Bree R et al. (2002) Detection of unknown primary tumours and distant metastases in patients with cervical metastases: value of FDG-PET versus conventional modalities. Eur J Nucl Med 29: 1024–1030

    Article  CAS  Google Scholar 

  66. Reiser M, Kuhn FP, Debus J (2004) Radiologie. Thieme, Stuttgart

    Google Scholar 

  67. Reske S, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, »Onko-PET III«, 21 July and 19 September 2000. Eur J Nucl Med 28: 1707– 1723

    Article  PubMed  CAS  Google Scholar 

  68. Riede UN, Schäfer HE (1999) Allgemeine und Spezielle Pathologie. Thieme, Stuttgart

    Google Scholar 

  69. Ringel MD, Balducci-Silano PL, Anderson JS et al. (1999) Quantitative reverse transscription-polymerase chain reaction of circulating thyroglobulin messenger ribonucleic acid for monitoring patients with thyroid carcinoma. J Clin Endocrinol Metabol 84: 4037–4042

    Article  CAS  Google Scholar 

  70. Rosenbaum S, Freudenberg L, Pink R et al. (2004) PET/CT-Stellenwert beim Schilddrüsenkarzinom. Der Nuklearmediziner 27: 272–277

    Article  Google Scholar 

  71. Schlüter B, Bohuslavizki KH, Beyer W et al. (2001) Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med 42: 71–76

    PubMed  Google Scholar 

  72. Schmidt D, Herzog H, Langen KJ, Müller-Gärtner HW (1994) Glucose metabolism in thyroid cancer metastases. Exp Clin Endocrinol 102: 51–54

    Article  Google Scholar 

  73. Schöder H, Yeung HW (2004) Positron emission of head and neck cancer, including thyroid carcinoma. Semin Nucl Med 34: 180– 197

    Article  PubMed  Google Scholar 

  74. Schöder H, Carlson DL, Kraus DH et al. (2006) 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. J Nucl Med 47: 755–762

    PubMed  Google Scholar 

  75. Schönberger J, Ruschoff J, Grimm D et al. (2002) Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 12: 747–754

    Article  PubMed  Google Scholar 

  76. Shah JP (1990) Patterns of cervical lymphnode metastasis from squamous carcinomas of the upper aerodistive tract. Am J Surg 160: 405–409

    Article  PubMed  CAS  Google Scholar 

  77. Shu-Hang N, Chang J, Tung-Chieh JC et al. (2004) Clinical usefulness of 18F-FDG PET in nasopharyngeal carcinoma patients with questionable MRI findings for recurrence. J Nucl Med 45: 1669– 1676

    Google Scholar 

  78. Steinkamp HJ, Hosten N, Langer R, Mathe F, Ehritt C, Felix R (1992) Halslymphknotenmetastasen. Sonographischer Malignitätsnachweis. Fortschr Röntgenstr 156: 135–141

    Article  CAS  Google Scholar 

  79. Stuckensen T, Kovacs AF, Adams ST, Baum RP (2000) Staging of the neck in patients with oral cavity squamous cell carcinoma: a prospective comparison of PET, ultrasound, CT and MRI. J Craniomaxillofac Surg 28: 319–324

    PubMed  CAS  Google Scholar 

  80. Sundaresan G, Yazaki PJ, Shively JE et al. (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44: 1962–1969

    PubMed  CAS  Google Scholar 

  81. Teixeira JPVP, Duarte H, Lucena I et al. (2009) Clinical significance of incidental thyroid findings on 18F-FDG PET/CT. Springer, Berlin: 0P602, S274

    Google Scholar 

  82. Torabi M, Aquino SL, Harisinghani M (2004) Current concepts in lymph node imaging. J Nucl Med 45: 1509–1518

    PubMed  Google Scholar 

  83. Troost EGC, Vogel WV, Merkx MAW et al. (2007) 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J Nucl Med 48: 726

    Article  PubMed  Google Scholar 

  84. Vogl T, Mees K, Muhlig M, Lissner J (1987) Magnetic resonance imaging in diagnosing diseases of the neck. Hospimedica 5: 1–2, 17

    Google Scholar 

  85. Vogl TJ, Grevers G, Lissner J (1992) Die Magnetresonanzverfahren für die Tumordiagnostik in der Kopf-Hals-Region. Dtsch Ärztebl 89: B-2539–B-2546

    Google Scholar 

  86. Wang W, Larson SM, Tuttle RM et al. (2001) Resistence of [18f ]-fluorodeoxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid 11: 1169–1176

    Article  PubMed  CAS  Google Scholar 

  87. Wax MK, L Myers L, Gubulski EC et al. (2002) Positron emission tomography in the evaluation of synchronous lung lesions in patients with untreated head and neck cancer. Arch Otolaryngol Head Neck Surg 28: 703–707

    Google Scholar 

  88. Weissleder R, Elizondo G, Wittenberg J et al. (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175: 489–493

    PubMed  CAS  Google Scholar 

  89. Yasuda S, Shotsu A, Ide M et al. (2007) Chronic thyreoiditis: diffuse uptake of FDG at PET. Radiology: 775–778

    Google Scholar 

  90. Yau K, Price P, Pillai RG, Aboagye E (2006) Elevation of radiolabelled thymidine uptake in RIF-1 fibrosarcoma and HT29 colon adenocarcinoma cells after treatment with thymidilate synthase inhibitors. Eur J Nucl Med Mol Imaging 33: 981–987

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohnike, W., Hör, G., Schelbert, H. (2011). Kopf-Hals-Region. In: PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17805-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17805-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17804-7

  • Online ISBN: 978-3-642-17805-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics