Skip to main content

Gastroenterologie

  • Chapter
PET/CT-Atlas

Zusammenfassung

In der Vergangenheit fanden nuklearmedizinische Methoden nur zögerlich Eingang in die gastroenterologische Diagnostik (s. Literatur auf DVD [6.1]). In Nachsorge und Rehabilitation von Tumoren des Gastrointestinaltrakts (GIT) wurden SPECT, PET und PET/CT nicht oder nur approximativ berücksichtigt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G (1998) Limited value of fluorine-18 fluordexyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 25: 79–83

    PubMed  CAS  Google Scholar 

  2. Adams S, Baum RP, Stuckensen T, Bitter K, Hör G (1998) Prospective comparison of FDG PET with conventional imaging modalities CT, MRI, US in lymph node staging of head and neck cancer. Eur J Nucl Med 9 25: 1255–1260

    PubMed  CAS  Google Scholar 

  3. Ahlström A, Eriksson B, Bergström M et al. (1995) Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology 195: 333– 337

    PubMed  Google Scholar 

  4. Antoch G, Vogt FM, Veit P et al. (2005) Assessment of liver tissue after radiofrequency ablation: findings with different imaging procedures. J Nucl Med 45: 520–525

    Google Scholar 

  5. Arnold CHN, Goel A, Blum HE, Boland CR (2005) Molecular pathogenesis of colorectal cancer. Implications of molecular diagnosis. Cancer 104: 2035–2047

    PubMed  CAS  Google Scholar 

  6. Arulampalam TH, Francis DL, Visvikis D et al. (2004) FDG PET for the pre-operative evaluation of colorectal liver metastases. Eur J Surg Oncol 30: 286–291

    PubMed  CAS  Google Scholar 

  7. Balogova S, Huchet V, Nataf V et al. (2009) Fluoromethylcholine (18F)PET/CT for staging hepatocellular carcinoma: prospective comparison with FDG (18F) PET/CT. Nukleamedizin 48 (Abstr. 17): 146

    Google Scholar 

  8. Bares R, Klever P, Hellwig D, Hautpmann S, Fass J, Hambuechen U, Zott L, Müller B, Buell U, Schumpelick V (1993) Pancreatic cancer detected by positron emission tomography with 18F-labelled deoxyglucose: method an first results. Nucl Med Comm 14: 596–601

    CAS  Google Scholar 

  9. Bar-Shalom R, Guralinik L, Tsalic M et al. (2005) The additional value of PET/CT over PET in FDG imaging of esophageal cancer. Eur J Nucl Med Mol Imaging 32: 918–24

    PubMed  Google Scholar 

  10. Basu S, Housemi M, Mavi A et al. (2007) Does the primary breast lesion and the metastatic foci behave differently with regard to FDG uptake over time in dual time-point FDG-PET? J Nucl Med 48: 144P

    Google Scholar 

  11. Baum RP, Söldner J, Schmücking M, Niesen A (2004) Peptidrezeptorvermittelte Radiotherapie (PRRT) neuroendokriner Tumoren (Klinische Indikationen und Erfahrung mit 90Yttrium-markierten Somatostatinanaloga). Onkologe 10: 1098–1110

    Google Scholar 

  12. Beets-Tan RGH, Beets GL (2004) Rectal cancer review with emphasis on MR imaging. Radiology 232: 335–346

    PubMed  Google Scholar 

  13. Birgisson H, Pahlman L, Gunnarsson U, Glimelius B et al. (2005) Occurence of second cancers in patients treated with radiotherapy for rectal cancer. J Clin Oncol 97(18): 6126–6131

    Google Scholar 

  14. von Braunbehrens H (1948) Die Strahlenbehandlung des Speisenröhrenkrebses. Strahlentherapie 79: 28–426

    Google Scholar 

  15. Breeman WA, Verbruggen AM (2007) The 68Ge/68Ga generator has high potential, but when can we use 68G- labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging 34: 978–981

    PubMed  Google Scholar 

  16. Calvert PM, Frucht H (2002) The genetics of colorectal cancer (review). Ann Intern Med 137: 603–612

    PubMed  CAS  Google Scholar 

  17. Caspary WC, Stein J (1999) Darmkrankheiten (Klinik, Diagnostik und Therapie). Springer, Berlin

    Google Scholar 

  18. Choi JY, Young H, Shim YM et al. (2004) 18F-FDG PET in patients with esophageal squamous cell carcinoma undergoing curative surgery: prognostic implications. J Nucl Med 45: 1843–1850

    PubMed  Google Scholar 

  19. Cohade C, Osman M, Pannu HK, Wahl RL (2003) Uptake in supraclavicular area fat (USA-fat): Description on 18F-FDG PET/CT. J Nucl Med 44: 170–176

    PubMed  CAS  Google Scholar 

  20. Courtney EDJ, Leville DM, Leicester RJ (2004) Review article: chemoprevention of colorectal cancer. Al Pharmacol Ther 19: 1–24

    CAS  Google Scholar 

  21. Delbecke D, Rose M, Capman WC et al. (1999) Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J Nucl Med 40: 1784–1791

    Google Scholar 

  22. Denecke T, Ruf J, Amthauer H (2005) Nuklearmedizinische Diagnostik maligner Tumoren des Gastrointestinaltraktes. Onkologie 3: online

    Google Scholar 

  23. Desai DC, Zervos EE, Arnold MW, Burak WE, Mantil J, Martin EW (2003) Positron emission tomography affects surgical management in recurrent colorectal cancer patients. Ann Surg Oncol 10(1): 59–64

    PubMed  Google Scholar 

  24. Dimitrakopoulou-Strauss A, Strauss LG, Rudi J et al. (2003) PETFDG as predictor of therapy response in patients with colorectal carcinoma. Q J Nucl Med 47: 8–13

    PubMed  CAS  Google Scholar 

  25. Donckier V, van Laethem JL, Goldman S et al. (2003) 18-F-fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation for live metastases. J Surg Oncol 84: 215–223

    PubMed  Google Scholar 

  26. Drenth JP, Nagengast FM, Oyen WJ et al. (2001) Evaluation of (pre-) malignant colonic abnormalities: endoscopic validation of FDG PET findings. Eur J Nucl Med 28: 1766–1769

    PubMed  CAS  Google Scholar 

  27. Erdi YE, Larson SM (2002) PET/CT scanners improve cancer treatment planning. Diagnostic Imaging 11: 11–12

    Google Scholar 

  28. Even-Sapir E, Parag Y, Lerman H et al. (2004) Detection of recurrrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. Radiology 232: 815–822 Epub

    PubMed  Google Scholar 

  29. Falk PE (2003) Whole-body FDG PET imaging in colorectal cancer. Siemens/CTI-Contin. Educ. (CME)

    Google Scholar 

  30. Findlay M, Young H, Cunningham D et al. (1996) Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 14: 700–708

    PubMed  CAS  Google Scholar 

  31. Flamen P, Lerut A, van Cutsem E et al. (2000) The utility of positron emission tomography for the diagnosis and staging of recurrent esophageal cancer. J Thorac Cardiovasc Surg 120: 1085–1092

    PubMed  CAS  Google Scholar 

  32. Flamen P, Hoekstra OS, Homans F et al. (2001) Unexplained rising carcinoembryonic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET). Eur J Cancer 37: 862–869

    PubMed  CAS  Google Scholar 

  33. Francis DL, Visvikis D, Costa DC et al. (2003) Potential impact of [18F]3’deoxy-3’fluorothymidine versus [18F]fluoro-2-deoxy-Dglucose in positron emssion tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30: 988–994

    PubMed  CAS  Google Scholar 

  34. Gambhir SS, Czernin J, Schwimmer J et al. (2001) A Tabulated Summary of the FDG PET Literature. J Nucl Med 42 (Suppl): 1S– 93S

    PubMed  CAS  Google Scholar 

  35. Goebell H, Ammann R, Creutzfeldt W (2005) History of the European Pancreatic Club: The first 40 years 1965–2005. Karger, Basel 1 and 2: 1–34

    Google Scholar 

  36. Guillem JG, Puig-La Calle J jr., Akhurst T et al. (2000) Prospective assessment of primary rectal cancer response to preoperative radiation and chemotherapy using 18 fluorodeoxyglucose positron emission tomography. Dis Colon Rectum 43: 18–24

    PubMed  CAS  Google Scholar 

  37. Hecht JR (2004) Improved imaging and the clinician: the role of positron emission tomography in the management of colorectal cancer. Mol Imaging Biol 6: 208–213

    PubMed  Google Scholar 

  38. Herfarth Ch, Hohenberger P, Glaser F (1992) Reduced surgical radicality by new diagnostic procedures and new diagnostic modalities. In: Fortner JF, Rhoads JE (Hrsg) Accomplishment in cancer research. Philadelphia, S 225–238

    Google Scholar 

  39. Herlyn M, Koprowski H (1982) Monoclonal antibodies against solid human tumors inhibit tumor growth in nude mice. Hybridoma 1: 206

    Google Scholar 

  40. Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34: 414–419

    PubMed  CAS  Google Scholar 

  41. Ho CL, Chen S, Yeung DWC, Cheng THKC (2007) Dual-tracer PET/ CT imaging in evaluation of metastatic hepatocelluar carcinoma. J Nucl Med 48: 902–909

    PubMed  CAS  Google Scholar 

  42. Huebner KF, King P, Gibbs WD, Partain CL, Washburn LC, Holloway R, Hayes E (1980) Clinical investigations with 11C-labeled amino acids using positron emission computerized tomography in patients with neoplastic diseases. Medical Radionuclide Imaging 1980, proceedings of an international symposium, Heidelberg, Germany, vol. 2. International Atomic Energy agency, Vienna

    Google Scholar 

  43. Huebner RH, Park KC, Shephend JE et al. (2000) A meta-analysis of the literature for whole body FDG PET detection of recurrent colorectal cancer. J Nucl Med 41: 1177–1189

    PubMed  CAS  Google Scholar 

  44. Ishiwata K, Tomura M, Ido T et al. (1990) 6-[18F]fluoro-L-fucose: a possible tracer for assessing glycoconjugate synthesis in tumors with positron emission tomography. J Nucl Med 31: 1997–2003

    PubMed  CAS  Google Scholar 

  45. Jang S, Kang W, Jang S et al. (2007) Prediction of colon cancer recurrence with CEA level in patient with negative FDG PET (Abstr 483). J Nucl Med 48 (Suppl 2): 142P

    Google Scholar 

  46. Kalff V, Hicks RJ, Ware RE et al. (2002) The clinical impact of 18F-FDG PET in patients with suspected or confirmed recurrence of colorectal cancer: A prospective study. J Nucl Med 43: 492– 499

    PubMed  Google Scholar 

  47. Kamel EM, Thumshirn M, Truninger K et al. (2004) Significance of incidental 18F-FDG accumulations in the gastrointestinal tract on PET/CT: correlation with endoscopic and histopathological results. J Nucl Med 45: 1804–1810

    PubMed  Google Scholar 

  48. Kantorova I, Lipska L, Belohlavek O et al. (2003) Routine of 18F-FDG PET preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J Nucl Med 44: 1784–1788

    PubMed  Google Scholar 

  49. Kim S, Chung J, Tae Kim B et al. (1999) Relationship between gastrointestinal F-18-fluorodeoxyglucose accumulation and gastrointestinal symptoms in whole body PET. Clin Positron Imag 2: 273–280

    Google Scholar 

  50. Körner M, Stöckli M, Waser B, Reubi JC (2007) GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J Nucl Med 48: 736

    PubMed  Google Scholar 

  51. Koopmans KP, Browers AH, de Hooge MN et al. (2005) Carcinoid crisis after injection of 6-18F-fluorodihydroxyphenylalanine in a patient with metastatic carcinoid. J Nucl Med 46: 1240–1243

    PubMed  Google Scholar 

  52. Koprowski H, Steplewski Z, Mitchell K, Herlyn M (1979) Colorectal carcinoma antigens detected by hybridoma antibodies. Somat Cell Genet 5: 957–972

    PubMed  CAS  Google Scholar 

  53. van Kouwen MCA, Jansen JBM J, van Goot H et al. (2005) FDG-PET is able to detect pancreatic carcinoma in chronic pancreatitis. Eur J Nucl Med Mol Imaging 32: 399–404

    PubMed  Google Scholar 

  54. Krause BJ, Blumstein NM, Schäfer S et al. (2004) Evaluation of F-18-FDG PET/CT in patients suspected of local recurrence of colorectal cancer introduced to external conformal radiotherapy (Abstr. 348). Eur J Nucl Med Mol Imaging 31: S285

    Google Scholar 

  55. Kuehl H, Veit P, Rosenbaum SJ et al. (2007) Can PET/CT replace separate diagnostic CT for cancer imaging? Optimizing CT protocols for imaging cancers of the chest and abdomen. J Nucl Med 48 (Suppl1): 45S–47S

    Google Scholar 

  56. Lejeune C, Bismuth MJ, Conroy T et al. (2005) Use of decision analysis model to assess the cost-effectiveness of 18F-FDG PET in the management of metachronous liver metastases of colorectal cancer. J Nucl Med 46: 2020–2028

    PubMed  Google Scholar 

  57. Lordick F, Ott K, Krause BJ (2007) PET to assess early metabolic response and to guide Lancet Oncol 8: 797–805

    PubMed  Google Scholar 

  58. Louis E, Ancion G, Colard A et al. (2007) Noninvasive assessment of Crohn’s disease intestinal lesions with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 48: 1053–1059

    Google Scholar 

  59. Lowe VJ, Booya F, Fletcher JG et al. (2005) Comparison of positron emission tomography, computed tomography, and endoscopic ultrasound in the initial staging of patients with esophageal cancer. Mol Imaging Biol 7: 422–430

    PubMed  Google Scholar 

  60. Lyshchik A, Higashi T, Nakamoto Y et al. (2005) Dual-phase 18F-fluoro-2-deoxy-D-glucose positron emission tomography as a prognostic parameteer in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging 32: 389–397

    PubMed  Google Scholar 

  61. Miehsler W, Reinisch W, Novacek G et al. (2004) Is inflammatory bowel disease an independent and disease specific risk risk factor for thromboembolism? Gut 53: 542–548

    PubMed  CAS  Google Scholar 

  62. Miraldi F, Vesselle H, Faulhaber P et al. (1998) Elimination of artifactual accumulation of FDG in PET imaging of colorectal cancer. Clin Nucl Med 23: 3–7

    PubMed  CAS  Google Scholar 

  63. Nakamoto Y, Tatsumi M, Cohade C et al. (2003) Accuracy of image fusion of normal upper abdominal organs visualized with PET/ CT. Eur J Nucl Med Mol Imaging 30: 597–602

    PubMed  Google Scholar 

  64. Nanni C, Rubello D, Fanti ST (2006) 18F-DOPA PET/CT and neuroendocrine tumours. Eur J Nucl Med Mol Imaging 33: 509–513

    PubMed  Google Scholar 

  65. Ochsenkühn T, Bayerdorffer E, Meining A et al. (2005) Increased prevalence of colorectal adenomas in women with breast cancer. Digestion 72: 150–155

    PubMed  Google Scholar 

  66. Ott K, Weber WA, Fink U et al. (2001) Responseevaluation durch Positronemissionstomographie (PET) im Rahmen der neoadjuvanten Therapie. Chirurg 72: 1003–1009

    Google Scholar 

  67. Ott K, Weber WA, Lordick F, Becker K, Busch R, Herrmann K, Wieder H, Fink U, Schwaiger M, Siewert JR (2006) Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin Oncol 24(29): 4692–4698

    PubMed  Google Scholar 

  68. Park KC, Schwimmer J, Sheoerd JE et al. (2001) Decision analysis for the cost-effective management of recurrent colorectal cancer. Ann Surg 233: 310–319

    PubMed  CAS  Google Scholar 

  69. Poston GJ (2005) Radiofrequency ablation of colorectal liver metastases: where are we really going ? J Clin Oncol 23: 1342–1344

    PubMed  Google Scholar 

  70. Reinhardt MJ, Strunk H, Gerhardt T et al. (2005) Detection of Klatskin’s tumor in extrahepatic bile duct strictures using delayed 18F-FDG PET/CT: preliminary results for 22 patient studies. J Nucl Med 46: 1158–1163

    PubMed  Google Scholar 

  71. Reske SN, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, »Onko-PET III«, 21 July and 19 September 2000. Eur J Nucl Med 28: 1707– 1723

    PubMed  CAS  Google Scholar 

  72. Reske SN, Grillenberger KG, Glatting G, Port M, Hildebrandt M, Gansauge F, Berger HG (1997) Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinom. J Nucl Med 38: 1344–1348

    PubMed  CAS  Google Scholar 

  73. Reske SN, Guhlmann A, Schirrmeister H (1998) Positronen-Emissions-Tomographie in der Diagnostik abdomineller Tumore. Schweiz Med Wschr 128: 96–108

    PubMed  CAS  Google Scholar 

  74. Reubi JC, Schaer JC, Waser B, Menod G (1994) Expression and localization of somatostatin receptor SSTR1, SSTR2 and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res 54: 3455–3459

    PubMed  CAS  Google Scholar 

  75. Reubi JC, Körner M, Waser B et al. (2004) High expression of peptide receptors as a novel target in gastrointestinal stromal tumours. Eur J Nucl Med Mol Imaging 31: 803–810

    PubMed  CAS  Google Scholar 

  76. Riedl CC, Akhurst T, Larson ST et al. (2007) 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastaes. J Nucl Med 48: 771–775

    PubMed  Google Scholar 

  77. Rocher AB, Chapon F, Blaizot X et al. (2003) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 20: 1894–1898

    PubMed  Google Scholar 

  78. Ruers TJ, Laangenhoff BS, Neeleman N et al. (2002) Value of positron emission tomography with F-18-fluordeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol 20: 388–395

    PubMed  CAS  Google Scholar 

  79. Sakuma T, Kijima H, Nishi M et al. (2004) An anti-K-ras ribozyme suppresses oncogene expression and cell growth of human pancreatic cancer. Tokai J Exp Clin Med 29: 35–42

    PubMed  CAS  Google Scholar 

  80. Santo E (2004) Pancreatic cancer imaging: which method? JOP 5(4): 253–257

    PubMed  Google Scholar 

  81. Schirrmeister H et al. (2000) Is (18)F-fluorodeoxyglucose positron emission tomography in recurrent colorectal cancer a contribution to surgical decision making? Am J Surg 180(1): 1–5

    PubMed  Google Scholar 

  82. Schlag PM, Amthauer H, Stroszczynski C, Felix R (2001) Influence of positron emission tomography on surgical therapy planning in recurrent colorectal cancer. Chirurg 72: 995–1002

    PubMed  CAS  Google Scholar 

  83. Shen YY, Su CT, Chen GJ et al. (2003) The value of 18F-fluordeoxyglucose positron emission tomography with the additional help of tumor markers in cancer screening. Neoplasia 50: 217–221

    CAS  Google Scholar 

  84. Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32: 632–648

    Google Scholar 

  85. Strauss LG, Clorius JH, Schlag P et al. (1989) Recurrence of colorectal tumors: PET evaluation. Radiology 170: 329–332

    PubMed  CAS  Google Scholar 

  86. Sun S, Kao CH (2001) Negative results of 18FDG and 67Ga-citrate scintigraphy gastric MALT lymphoma. Ann Nucl Med Sci 20: 183– 186

    Google Scholar 

  87. Syrota A, Duquesnoy N, Paraf A, Kellershohn C (1982) Role of positron emission tomography in the detection of pancreatic disease. Radiology 143: 249–253

    PubMed  CAS  Google Scholar 

  88. Tatlidil R, Jadvar H, Bading JR, Conti PS (2002) Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology 224: 783–787

    PubMed  Google Scholar 

  89. Veit P, Antoch G, Stergar H, et al (2006) Detection of residual tumor after radiofrequency ablation of liver metastasis with dual modality PET/CT: initial results. Eur Radiol 16: 80–87

    PubMed  Google Scholar 

  90. Villano C, Maccauro M, Alberti C, Bombardieri E (2004) National experience with receptor scintigraphy with 111In penteotride (Octreoscan) on 2460 patients (Abstr. 48). Eur J Nucl Med Mol Imaging 31 (Suppl 2): S215

    Google Scholar 

  91. Visvikis D, Francis D, Mulligan R et al. (2004) Comparison of methodologies for the in vivo assessment of 18FLT utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging 31: 169–178

    PubMed  CAS  Google Scholar 

  92. Vitola JV, Delbeke D, Sandler MP et al. (1996) Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Amer J Surg 171: 21–26

    PubMed  CAS  Google Scholar 

  93. Wahl RL (2004) Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med 45 (Suppl 1): 82S–95S

    PubMed  Google Scholar 

  94. Wallace JR, Christians KK, Quiroz FA et al. (2001) Ablation of liver metastases: Is preoperative imaging sufficiently accurate? J Gastrointest Surg 5: 961–968

    Google Scholar 

  95. Weber WA, Figlin R (2007) Monitoring cancer treatment with PET/CT: Does it make a difference? J Nucl Med (Suppl 1) 48: 36S– 44S

    PubMed  CAS  Google Scholar 

  96. Wieder HA, Ott K, Becker K, Schwaiger M (2004) PET und PET/CT – Stellenwert beim Ösophaguskarzinom. Der Nuklearmediziner 27: 288–294

    Google Scholar 

  97. Wieder HA, Beer A, Lordick F et al. (2005) Comparison of changes in tumor metabolic activity and tumor size during chemotherapy of adenocarcinomas of the esophagogastric junction. J Nucl Med 46: 2029–2034

    PubMed  CAS  Google Scholar 

  98. Yasuda S, Takahashi W, Tagaki S, Fujii H et al. (1998) Factors influencing physiological FDG uptake in the intestine. Tokai J Exp Clin 23: 241–244

    CAS  Google Scholar 

  99. Yasuda S, Fujii H, Nakahara T et al. (2001) 18F-FDG PET detection of colonic adenomas. J Nucl Med 42: 989–992

    PubMed  CAS  Google Scholar 

  100. Yasuda S, Shimada H, Ogoshi K et al. (2001) Preliminary study for sentinel lymph node identification with Tc-99m tin colloid in patients with esophageal or gastric cancer. Tokai J Exp Clin Med 26: 15–18

    PubMed  CAS  Google Scholar 

  101. Yeung HWD, Macapinlac HA, Mazumdar M et al. (1998) FDG-PET in esophageal cancer: incremental value over computed tomography. Clin Positron Imag 2: 255–260

    Google Scholar 

  102. Yoshida H, Shiina S et al. (2005) Proposal of a new prognostic model for hepatocellular carcinoma: an analysis of 430 patients. Gut 54: 419–425

    PubMed  Google Scholar 

  103. Yun M, Lim JS, Noh SH et al. (2005) Lymph node staging of gastric cancer using (18)F-FDG PET: a comparison study with CT. J Nucl Med 46: 1582–1588

    PubMed  Google Scholar 

  104. Zeuzem S, Raedle J (1999) Molekulare Diagnostik/Darmkrankheiten. In: Caspary WC, Stein J (Hrsg) Darmkrankheiten (Klinik, Diagnostik und Therapie). Springer, Berlin, S 193–198

    Google Scholar 

  105. Zimny M, Fass J, Bares R et al. (2000) Fluordeoxyglucose positron emission tomography and the prognosis of pancreatic carcinoma. Scand J Gastroenterol 35: 883–888

    PubMed  CAS  Google Scholar 

  106. Zylka-Menhorn V (2006) Deutscher Krebskongress: Verräterische Signaturen (Medizin-Report). Dt Ärztebl 103: 686–687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohnike, W., Hör, G., Schelbert, H. (2011). Gastroenterologie. In: PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17805-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17805-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17804-7

  • Online ISBN: 978-3-642-17805-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics