Skip to main content

Zukunftstendenzen

  • Chapter
PET/CT-Atlas

Zusammenfassung

In der Therapie onkologischer Erkrankungen hat es in den letzten Jahren zahlreiche neue Ansätze gegeben, die auch molekulare Therapiemethoden einbeziehen und biotechnische Diagnoseverfahren nutzen. Trotz steigender Erkrankungszahlen sinkt die Krebssterblichkeit. Um möglichst effektiv behandeln zu können, ist einerseits die frühestmögliche Erkennung der Tumorerkrankung, andererseits eine exakte Ausbreitungsdiagnostik und schließlich die zeitnahe Beurteilung der Effektivität der therapeutischen Maßnahme erforderlich. Neben leitlinienorientierter Strategie spielt die individualisierte Therapie, die auch die Lebensqualität der Patienten möglichst hoch hält, eine entscheidende Rolle. Da die PET eine zellstoffwechselbasierte Information liefert, die völlig unabhängig von strukturellen Veränderungen (CT) ist, kann hier die PET/CT als molekular basierte Untersuchungsmethode aus prinzipiellen Gründen einen wesentlichen Beitrag leisten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abstracts Annual Congress of the EANM (2005) Istanbul/Turkey Springer, Berlin

    Google Scholar 

  2. Alfke H, Kalinowski M, Nocken F, Klose KJ (2000) Eine Übersicht über die molekulare Radiologie. Teil 1: Gentherapie. Fortschr Röntgenstr 172: 949–956

    Article  CAS  Google Scholar 

  3. Alfke H, Nocken F, Heverhagen JT, Klose KJ (2001) Molekulare Radiologie. Teil II: Molekulare Bildgebung. Fortschr Röntgenstr 173: 391–398

    Article  CAS  Google Scholar 

  4. Anderson CJ (1992) Copper-64-labeled antibodies for PET imaging. J Nucl Med 33: 1685–1691

    PubMed  CAS  Google Scholar 

  5. Anderson CJ (1993) PET imaging radionuclide copper-64 tested as radioimmunotherapy agent. J Nucl Med 34: 22N

    Google Scholar 

  6. Anton M, Wittermann C, Haubner R et al. (2004) Coexpression of herpes viral thymidine kinase reporter gene and VEGF gene for noninvasive monitoring of therapeutic gene transfer -An in vivo evaluation. J Nucl Med 45: 1743–1746

    PubMed  CAS  Google Scholar 

  7. Bengel FM, Anton M, Avril N et al. (2000) Uptake of radiolabeled 2’-Fluoro-2’-deoxy-5-iodo-1-beta-D-arabinofuranosyluracil in cardiac cells after adenoviral transfer of the herpesvirus thymidine kinase gene – The cellular basis for cardiac gene imaging. Circulation 102: 948–950

    PubMed  CAS  Google Scholar 

  8. Bhatia V, Bhatia R, Dhinsda S, Virk A (2003) Vulnerable plaques, inflammation, and newer imaging modalities. J Postgrad Med 49: 361–368

    PubMed  CAS  Google Scholar 

  9. Bockisch A, Beyer Th, Antoch G et al. (2004) Positron emission tomography/computed tomography-imaging protocols, artifacts, and pitfalls. Mol Imaging Biol 6: 188–199

    Article  PubMed  Google Scholar 

  10. Burns HD, Frank RA, Waterhouse R (2005) SNIDD Special Issue. Mol Imaging Biol 7: 2–4

    Article  PubMed  Google Scholar 

  11. Chapman JD (1979) Hypoxic sensitizers: implications for radiation therapy. N Engl J Med 301: 1429–1432

    Article  PubMed  CAS  Google Scholar 

  12. Chung JK (2002) Sodium iodide symporter: Its role in nuclear medicine. J Nucl Med 43: 1188–1200

    PubMed  CAS  Google Scholar 

  13. Chung JK, Kang JH (2004) Translational research using the sodium/iodide symporter in imaging and therapy. Eur J Nucl Med Mol Imaging 31: 799–802

    Article  PubMed  Google Scholar 

  14. Coakley FV, Qayyam A, Hurhanewicz J (2003) Magnetic resonance imaging and spectroscopic imaging of prostate cancer. J Urol 170: 69–75

    Article  Google Scholar 

  15. Dai G, Olevy, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379: 458–460

    Article  PubMed  CAS  Google Scholar 

  16. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171: 1151–1153

    Article  PubMed  CAS  Google Scholar 

  17. Foo SS, Abbott DF, Lawrentschuk N, Scott AM (2004) Functional imaging of intratumoral hypoxia. Mol Imaging Biol 6: 291–305

    Article  PubMed  Google Scholar 

  18. Fowler J (2002) Nuclear medicine chemistry. J Nucl Med 42: 14N

    Google Scholar 

  19. Gambhir SS, Barrio JR, Phelps ME, Iyer M et al (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci 96: 2333–2338

    Article  PubMed  CAS  Google Scholar 

  20. Gambhir SS, Bauer E, Black ME et al. (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad 96: 2785–2790

    Article  Google Scholar 

  21. Gödde E (1999) Klinische Bedeutung der Identifizierung und Charakterisierung von zirkulierenden Tumorzellen. Med Klin Suppl 3: 25–28

    Article  Google Scholar 

  22. Haberkorn U (2005) Einfluss molekularbiologischer Verfahren auf nuklearmedizinische Methoden. Nuklearmediziner 28: 62–72

    Article  Google Scholar 

  23. Heath JR, Phelps ME, Hood L (2003) Nano systems biology. Mol Imaging Biol 5: 312–325

    Article  PubMed  Google Scholar 

  24. Herbst RS, Mullani NA, Davis DW et al. (2002) Development of biological markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 20: 3804–3814

    Article  PubMed  CAS  Google Scholar 

  25. Hockel M, Schlenger K, Hockel S et al. (1999) Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 59: 4525–4528

    PubMed  CAS  Google Scholar 

  26. Hoon-Shin J, Chung JK, Kang JH et al. (2004) Noninvasive imaging for monitoring of viable cancer cells using a dual imaging reporter gene. J Nucl Med 45: 2109–2115

    Google Scholar 

  27. Iyer M, Barrio JR, Namavari M et al. (2001) 8-[18F]fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med 42: 96–105

    PubMed  CAS  Google Scholar 

  28. Iyer M, Wu L, Carey M, Wang Y et al. (2001) Two-step transscriptional amplification as a method for imaging reporter gene expression using weak promotors. Proc Natl Acad Sci USA 98: 14595–14600

    Article  PubMed  CAS  Google Scholar 

  29. Janni W, Pantel K, Racke B et al. (2004) Isolierte disseminierte Tumorzellen im Knochenmark von Brustkrebspatientinnen. Methodik, Biologie und klinische Relevanz. Dtsch Ärztebl 101: 3496–3502

    Google Scholar 

  30. Kim YJ, Dubey P, Ray P et al. (2004) Multimodality imaging of lymphocytic migration using lentiviral-based transduction of tri-fusion reporter gene. Mol Imaging Biol 6: 331–340

    Article  PubMed  Google Scholar 

  31. Kolodgie FD, Narula J, Burke AB et al. (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157: 1259–1268

    Article  PubMed  CAS  Google Scholar 

  32. Kurihara H, Nakamura S, Takehana K et al. (2002) Early prediction of regional functional recovery in reperfused myocardium using single-injection resting quantitative electrocardiographic gated PET. Eur J Nucl Med 29: 458–464

    Article  CAS  Google Scholar 

  33. Leinmüller R (2004) Nanotechnologie – Zwischen Science und Science fiction (Medizinreport). Dtsch Ärztebl 101

    Google Scholar 

  34. Luurtsema G, de Lange ECM, Lammertsama AA, Franssen EFJ (2004) Transport across the blood brain barrier: Stereoselectivity and PET Tracers. Mol Imaging Biol 6: 306–318

    Article  PubMed  Google Scholar 

  35. Machulla HJ, Bihl H (2005) Neue PET-Tracer in der Onkologie. Nuklearmediziner 28: 47–56

    Article  Google Scholar 

  36. Mawlawi O, Podoloff DA, Kohlmyer S et al. (2004) Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2 D and 3 D modes. J Nucl Med 45: 1734–1742

    PubMed  Google Scholar 

  37. Meyer GJ (2005) Therapie mit Alphastrahlern. Der Nuklearmediziner 28: 57–61

    Article  Google Scholar 

  38. Murakami Y, Takamatsu H, Taki H et al. (2004) 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging 31: 469–474

    Article  PubMed  CAS  Google Scholar 

  39. Niu G, Gaut AW, Boles Ponto LL et al. (2004) Multimodality noninvasive imaging of gene transfer using the human sodium iodide symporter. J Nucl Med 43: 445–449

    Google Scholar 

  40. Nutt R (2002) The history of positron emission tomography. Mol Imaging Biol 1: 11–26

    Google Scholar 

  41. Opitz OG, Blum HE (2001) Nobelpreis für Medizin 2001 – Schlüsselmoleküle für die Regulation des Zellzyklus. DMW Praxis 9/10: 262–263

    Google Scholar 

  42. Ringel MD, Balducci-Silano PL, Anderson JS et al. (1999) Quantitative reverse transcription-polymerase chain reaction of circulating thyroglobulin messenger ribonucleic acid for monitoring patients with thyroid carcinoma. J Clin Endocrinol Metabol 84: 4037–4042

    Article  CAS  Google Scholar 

  43. Roivainen A, Tolvanen T, Salomäki S et al. (2004) 68Ga-labeled oligonucleotides for in vivo imaging with PET. J Nucl Med 45: 347–355

    PubMed  CAS  Google Scholar 

  44. Sakuma T, Kijima H, Nishi M et al. (2004) An anti-K-ras ribozyme suppresses oncogene expression and cell growth of human pancreatic cancer. Tokai J Exp Clin Med 29: 35–42

    PubMed  CAS  Google Scholar 

  45. Schuhmacher J, Klivenyi G, Matys R et al. (1995) Multistep tumor targeting in nude mice using bispecific antibodies and a gallium chelate suitable for immunoscintigraphy with positron emission tomography. Cancer Research 55: 115–123

    PubMed  CAS  Google Scholar 

  46. Signore A, Annovazzi A, Barone R et al. (2004) 99mTc-Interleukin-2 scintigraphy as a potential tool for evaluating tumorinfiltrating lymphocytes in melanoma lesions: a validation study. J Nucl Med 45: 1647–1652

    PubMed  Google Scholar 

  47. Stahl A, Wieder H, Piert M et al. (2004) Positron emission tomography as a tool for translational research in oncology. Mol Imaging Biol 6: 214–224

    Article  PubMed  Google Scholar 

  48. Sundaresan G, Yazaki PJ, Shively JE et al. (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small animal PET imaging of xenografts in athymic mices. J Nucl Med 44: 1962–1969

    PubMed  CAS  Google Scholar 

  49. Tjuvajev JG, Doubrovin M, Akhurst T et al. (2002) Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 43: 1072–1083

    PubMed  Google Scholar 

  50. Townsend DW (2004) From 3-D positron emission tomography to 3-D positron emission tomography/computed tomography: what did we learn? Mol Imaging Biol 6: 275–290

    Article  PubMed  Google Scholar 

  51. Verel I, Visser GWM, Vosjan MJWD et al. (2004) High-quality 124-labelled monoclonal antibodies for use as PET scouting agents prior to I-131 radioimmunotherapy. Eur J Nucl Med Mol Imaging 31: 1645–1652

    Article  PubMed  CAS  Google Scholar 

  52. Wang Y, Iyer M, Annala AJ et al. (2005) Noninvasive monitoring of target gene expression by imaging reporter gene expression in living animals using improved bicistronic vectors. J Nucl Med 46: 667–674

    PubMed  CAS  Google Scholar 

  53. Weissleder R, Mahmood U (2002) Molecular imaging. Radiology 219: 316–333

    Google Scholar 

  54. Wolf AP, Redvanly CS (1977) Carbon-11 and radiopharmaceuticals. Int J Appl Radiat Isot 28: 29–48

    Article  PubMed  CAS  Google Scholar 

  55. Wu JC, Inubushi M, Sundaresan G et al. (2002) Positron emission tomography imaging of cardiac receptor gene expression in living rats. Circulation 106: 180–183

    Article  PubMed  Google Scholar 

  56. Yagle KJ, Eary JF, Tait JF et al. (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46: 658–666

    PubMed  CAS  Google Scholar 

  57. Zhao S, Kuge Y, Mochzuki T et al. (2005) Biological correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase II in experimental tumor. J Nucl Med 46: 675–682

    PubMed  CAS  Google Scholar 

  58. Zylka-Menhorn V (2005) DNA-Analysen in der forensischen Medizin – Nur die Länge funktionsloser Genabschnitte wird bestimmt (Bericht). Dtsch Ärztebl 102: C145–C465

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohnike, W., Hör, G., Schelbert, H. (2011). Zukunftstendenzen. In: PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17805-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17805-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17804-7

  • Online ISBN: 978-3-642-17805-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics