Skip to main content
Book cover

PET/CT-Atlas pp 845–892Cite as

Pädiatrie

  • Chapter

Zusammenfassung

Zur Anwendung der PET-Untersuchung bei den malignen endokrinen Tumoren liegen für das Kindesalter fast ausschließlich Fallberichte vor. Studien, die eine größere Zahl an Patienten einschließen, gibt es aufgrund der Seltenheit der Tumoren zumeist lediglich für Erwachsene

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Otonkoski T, Veijola R, Huopio H et al. (2003) Diagnosis of focal persistent hyperinsulinism of infancy with 18F-Fluoro-L-L-DOPA PET. Horm Res 60 (Suppl 2): 2

    Google Scholar 

  2. De Leon DD, Stanley CA (2007) Mechanisms of disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab 3(1): 57–68

    Article  PubMed  Google Scholar 

  3. Damaj L, le Lorch M, Verkarre V et al. (2008) Chromosome 11p15 paternal isodisomy in focal forms of neonatal hyperinsulinism. J Clin Endocrinol Metab 93(12): 4941–4947

    Article  PubMed  CAS  Google Scholar 

  4. Adzick NS, Thornton PS, Stanley CA, Kaye RD, Ruchelli E (2004) A multidisciplinary approach to the focal form of congenital hyperinsulinism leads to successful treatment by partial pancreatectomy. J Pediatr Surg 39(3): 270–275

    Article  PubMed  Google Scholar 

  5. Otonkoski T, Nanto-Salonen K, Seppanen M et al. (2006) Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]-DOPA positron emission tomography. Diabetes 55(1): 13–18

    Article  PubMed  CAS  Google Scholar 

  6. Lindstrom P (1986) Aromatic-L-amino-acid decarboxylase activity in mouse pancreatic islets. Biochim Biophys Acta 884(2): 276–281

    PubMed  CAS  Google Scholar 

  7. Hardy OT, Hernandez-Pampaloni M, Saffer JR et al. (2007) Accuracy of [18F]fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab 92(12): 4706–4711

    Article  PubMed  CAS  Google Scholar 

  8. Barthlen W, Blankenstein O, Mau H et al. (2008) Evaluation of (18F)FDOPA PET-CT for surgery in focal congenital hyperinsulinism. J Clin Endocrinol Metab 93(3): 869–875

    Article  PubMed  CAS  Google Scholar 

  9. Mohnike K, Blankenstein O, Minn H, Mohnike W, Fuchtner F, Otonkoski T (2008) [ 18 F]-DOPA Positron Emission Tomography for Preoperative Localization in Congenital Hyperinsulinism. Horm Res 70(2): 65–72

    Article  PubMed  CAS  Google Scholar 

  10. Ribeiro RC, Michalkiewicz EL, Figueiredo BC et al. (2000) Adrenocortical tumors in children. Braz J Med Biol Res 33(10): 1225–1234

    Article  PubMed  CAS  Google Scholar 

  11. Terzolo M, Angeli A, Fassnacht M et al. (2007) Adjuvant mitotane treatment for adrenocortical carcinoma. N Engl J Med 356(23): 2372–2380

    Article  PubMed  CAS  Google Scholar 

  12. Hacker FM, von SD, Gambazzi F (2007) The relevance of surgical therapy for bilateral and/or multiple pulmonary metastases in children. Eur J Pediatr Surg 17(2): 84–89

    Article  PubMed  Google Scholar 

  13. Hanna AM, Pham TH, Askegard-Giesmann JR et al. (2008) Outcome of adrenocortical tumors in children. J Pediatr Surg 43(5): 843–849

    Article  PubMed  Google Scholar 

  14. Groussin L, Bonardel G, Silvera S et al. (2009) 18F-Fluorodeoxyglucose positron emission tomography for the diagnosis of adrenocortical tumors: a prospective study in 77 operated patients. J Clin Endocrinol Metab 94(5): 1713–1722

    Article  PubMed  CAS  Google Scholar 

  15. Mackie GC, Shulkin BL, Ribeiro RC et al. (2006) Use of [18F]fluorodeoxyglucose positron emission tomography in evaluating locally recurrent and metastatic adrenocortical carcinoma. J Clin Endocrinol Metab 91(7): 2665–2671

    Article  PubMed  CAS  Google Scholar 

  16. Bergstrom M, Juhlin C, Bonasera TA et al. (2000) PET imaging of adrenal cortical tumors with the 11beta-hydroxylase tracer 11C-metomidate. J Nucl Med 41(2): 275–282

    PubMed  CAS  Google Scholar 

  17. Mitterhauser M, Dobrozemsky G, Zettinig G et al. (2006) Imaging of adrenocortical metastases with [11C]metomidate. Eur J Nucl Med Mol Imaging 33(8): 974

    Article  PubMed  Google Scholar 

  18. Zettinig G, Mitterhauser M, Wadsak W et al. (2004) Positron emission tomography imaging of adrenal masses: (18)F-fluorodeoxyglucose and the 11beta-hydroxylase tracer (11)C-metomidate. Eur J Nucl Med Mol Imaging 31(9): 1224–1230

    Article  PubMed  Google Scholar 

  19. Wadsak W, Mitterhauser M, Rendl G et al. (2006) [18F]FETO for adrenocortical PET imaging: a pilot study in healthy volunteers. Eur J Nucl Med Mol Imaging 33(6): 669–672

    Article  PubMed  Google Scholar 

  20. Mitterhauser M, Wadsak W, Wabnegger L et al. (2003) In vivo and in vitro evaluation of [18F]FETO with respect to the adrenocortical and GABAergic system in rats. Eur J Nucl Med Mol Imaging 30(10): 1398–1401

    Article  PubMed  CAS  Google Scholar 

  21. Szakall S Jr, Esik O, Bajzik G et al. (2002) 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med 43(1): 66–71

    PubMed  Google Scholar 

  22. Gimm O, Dralle H (1997) Medullary Thyroid Cancer - Reoperation. Acta Chirurgica Austriaca 29: 15–17

    Article  Google Scholar 

  23. Diehl M, Risse JH, Brandt-Mainz K et al. (2001) Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 28(11): 1671–1676

    Article  PubMed  CAS  Google Scholar 

  24. Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28(1): 64–71

    Article  PubMed  CAS  Google Scholar 

  25. Pacak K, Eisenhofer G, Ahlman H et al. (2007) Pheochromocytoma: recommendations for clinical practice from the First International Symposium. October 2005. Nat Clin Pract Endocrinol Metab 3(2): 92–102

    Article  PubMed  Google Scholar 

  26. Bravo EL (1994) Evolving concepts in the pathophysiology, diagnosis, and treatment of pheochromocytoma. Endocr Rev 15(3): 356–368

    PubMed  CAS  Google Scholar 

  27. Furuta N, Kiyota H, Yoshigoe F, Hasegawa N, Ohishi Y (1999) Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodobenzylguanidine scintigraphy. Int J Urol 6(3): 119–124

    Article  PubMed  CAS  Google Scholar 

  28. Sisson JC, Shulkin BL, Esfandiari NH (2006) Courses of malignant pheochromocytoma: implications for therapy. Ann N Y Acad Sci 1073: 505–511

    Article  PubMed  CAS  Google Scholar 

  29. Lumachi F, Tregnaghi A, Zucchetta P et al. (2006) Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: a prospective study. Nucl Med Commun 27(7): 583–587

    Article  PubMed  Google Scholar 

  30. Nakatani T, Hayama T, Uchida J, Nakamura K, Takemoto Y, Sugimura K (2002) Diagnostic localization of extra-adrenal pheochromocytoma: comparison of (123)I-MIBG imaging and (131)I-MIBG imaging. Oncol Rep 9(6): 1225–1227

    PubMed  Google Scholar 

  31. Shapiro B, Gross MD, Shulkin B (2001) Radioisotope diagnosis and therapy of malignant pheochromocytoma. Trends Endocrinol Metab 12(10): 469–475

    Article  PubMed  CAS  Google Scholar 

  32. Bhatia KS, Ismail MM, Sahdev A et al. (2008) 123I-metaiodobenzylguanidine (MIBG) scintigraphy for the detection of adrenal and extra-adrenal phaeochromocytomas: CT and MRI correlation. Clin Endocrinol (Oxf ) 69(2): 181–188

    Article  Google Scholar 

  33. Mackenzie IS, Gurnell M, Balan KK, Simpson H, Chatterjee K, Brown MJ (2007) The use of 18-fluoro-dihydroxyphenylalanine and 18-fluorodeoxyglucose positron emission tomography scanning in the assessment of metaiodobenzylguanidinenegative phaeochromocytoma. Eur J Endocrinol 157(4): 533– 537

    Article  PubMed  CAS  Google Scholar 

  34. van der Horst-Schrivers AN, Jager PL, Boezen HM, Schouten JP, Kema IP, Links TP (2006) Iodine-123 metaiodobenzylguanidine scintigraphy in localising phaeochromocytomas-experience and meta-analysis. Anticancer Res 26(2B): 1599–1604

    Google Scholar 

  35. van der HE, de Herder WW, Bruining HA et al. (2001) [(123)I]metaiodobenzylguanidine and [(111)In]octreotide uptake in begnign and malignant pheochromocytomas. J Clin Endocrinol Metab 86(2): 685–693

    Article  Google Scholar 

  36. Rosenspire KC, Haka MS, Van Dort ME et al. (1990) Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med 31(8): 1328–1334

    PubMed  CAS  Google Scholar 

  37. Schwaiger M, Kalff V, Rosenspire K et al. (1990) Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 82(2): 457–464

    Article  PubMed  CAS  Google Scholar 

  38. Pacak K, Eisenhofer G, Carrasquillo JA, Chen CC, Whatley M, Goldstein DS (2002) Diagnostic localization of pheochromocytoma: the coming of age of positron emission tomography. Ann N Y Acad Sci 970: 170–176

    Article  PubMed  CAS  Google Scholar 

  39. Timmers HJ, Chen CC, Carrasquillo JA et al. (2009) Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 94(12): 4757–4767

    Article  PubMed  CAS  Google Scholar 

  40. Kaji P, Carrasquillo JA, Linehan WM et al. (2007) The role of 6-[18F] fluorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel-Lindau syndrome. Eur J Endocrinol 156(4): 483–487

    Article  PubMed  CAS  Google Scholar 

  41. Taieb D, Sebag F, Hubbard JG, Mundler O, Henry JF, Conte-Devolx B (2004) Does iodine-131 meta-iodobenzylguanidine (MIBG) scintigraphy have an impact on the management of sporadic and familial phaeochromocytoma? Clin Endocrinol (Oxf ) 61(1): 102–108

    Article  CAS  Google Scholar 

  42. Von ML, McEwan AJ, Shapiro B et al. (1987) Iodine-131 MIBG scintigraphy of neuroendocrine tumors other than pheochromocytoma and neuroblastoma. J Nucl Med 28(6): 979–988

    Google Scholar 

  43. Eisenhofer G (2001) The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91(1): 35–62

    Article  PubMed  CAS  Google Scholar 

  44. Aprill BS, Drake AJ, III, Lasseter DH, Shakir KM (1994) Silent adrenal nodules in von Hippel-Lindau disease suggest pheochromocytoma. Ann Intern Med 120(6): 485–487

    PubMed  CAS  Google Scholar 

  45. Mottaghy FM, Reske SN (2006) Functional imaging of neuroendocrine tumours with PET. Pituitary 9(3): 237–242

    Article  PubMed  CAS  Google Scholar 

  46. Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36(3): 228–247

    Article  PubMed  Google Scholar 

  47. Sundin A, Garske U, Orlefors H (2007) Nuclear imaging of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 21(1): 69–85

    Article  PubMed  CAS  Google Scholar 

  48. Bombardieri E, Aktolun C, Baum RP et al. (2003) 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 30(12): BP140–BP147

    PubMed  Google Scholar 

  49. Cimitan M, Buonadonna A, Cannizzaro R et al. (2003) Somatostatin receptor scintigraphy versus chromogranin A assay in the management of patients with neuroendocrine tumors of different types: clinical role. Ann Oncol 14(7): 1135–1141

    Article  PubMed  CAS  Google Scholar 

  50. Miederer M, Seidl S, Buck A et al. (2009) Correlation of immunohistopathological expression of somatostatin receptor 2 with standardised uptake values in 68Ga-DOTATOC PET/CT. Eur J Nucl Med Mol Imaging 36(1): 48–52

    Article  PubMed  CAS  Google Scholar 

  51. Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U (2003) Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5(1): 42–48

    Article  PubMed  Google Scholar 

  52. Gabriel M, Decristoforo C, Kendler D et al. (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48(4): 508–518

    Article  PubMed  CAS  Google Scholar 

  53. Buchmann I, Henze M, Engelbrecht S et al. (2007) Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34(10): 1617–1626

    Article  PubMed  CAS  Google Scholar 

  54. Haug A, Auernhammer CJ, Wangler B et al. (2009) Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 36(5): 765–770

    Article  PubMed  CAS  Google Scholar 

  55. Ambrosini V, Tomassetti P, Castellucci P et al. (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35(8): 1431–1438

    Article  PubMed  CAS  Google Scholar 

  56. Curtis JM, Lacey D, Smyth R, Carty H (1998) Endobronchial tumours in childhood. Eur J Radiol 29(1): 11–20

    Article  PubMed  CAS  Google Scholar 

  57. Hancock BJ, Di LM, Youssef S, Yazbeck S, Marcotte JE, Collin PP (1993) Childhood primary pulmonary neoplasms. J Pediatr Surg 28(9): 1133–1136

    Article  PubMed  CAS  Google Scholar 

  58. Gustafsson BI, Kidd M, Chan A, Malfertheiner MV, Modlin IM (2008) Bronchopulmonary neuroendocrine tumors. Cancer 113(1): 5–21

    Article  PubMed  CAS  Google Scholar 

  59. Sachithanandan N, Harle RA, Burgess JR (2005) Bronchopulmonary carcinoid in multiple endocrine neoplasia type 1. Cancer 103(3): 509–515

    Article  PubMed  Google Scholar 

  60. Schussheim DH, Skarulis MC, Agarwal SK et al. (2001) Multiple endocrine neoplasia type 1: new clinical and basic findings. Trends Endocrinol Metab 12(4): 173–178

    Article  PubMed  CAS  Google Scholar 

  61. Moraes TJ, Langer JC, Forte V, Shayan K, Sweezey N (2003) Pediatric pulmonary carcinoid: a case report and review of the literature. Pediatr Pulmonol 35(4): 318–322

    Article  PubMed  Google Scholar 

  62. Kayani I, Conry BG, Groves AM et al. (2009) A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 50(12): 1927–1932

    Article  PubMed  Google Scholar 

  63. Ambrosini V, Castellucci P, Rubello D et al. (2009) 68Ga-DOTA-NOC: a new PET tracer for evaluating patients with bronchial carcinoid. Nucl Med Commun 30(4): 281–286

    Article  PubMed  Google Scholar 

  64. Delman KA, Shapiro SE, Jonasch EW et al. (2006) Abdominal visceral lesions in von Hippel-Lindau disease: incidence and clinical behavior of pancreatic and adrenal lesions at a single center. World J Surg 30(5): 665–669

    Article  PubMed  Google Scholar 

  65. Marx SJ, Agarwal SK, Kester MB et al. (1999) Multiple endocrine neoplasia type 1: clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog Horm Res 54: 397–438

    PubMed  CAS  Google Scholar 

  66. Ambrosini V, Rubello D, Nanni C, Al-Nahhas A, Fanti S (2008) 68Ga-DOTA-peptides versus 18F-DOPA PET for the assessment of NET patients. Nucl Med Commun 29(5): 415–417

    Article  PubMed  Google Scholar 

  67. Prasad V, Baum RP (2010) Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging 54(1): 61–67

    PubMed  CAS  Google Scholar 

  68. Ambrosini V, Tomassetti P, Castellucci P et al. (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35(8): 1431–1438

    Article  PubMed  CAS  Google Scholar 

  69. Wild D, Macke HR, Waser B et al. (2005) 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 32(6): 724

    Article  PubMed  Google Scholar 

  70. Antunes P, Ginj M, Zhang H et al. (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34(7): 982–993

    Article  PubMed  CAS  Google Scholar 

  71. Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY (2008) 6-L-18F-Fluorodihydroxyphenylalanine PET in Neuroendocrine Tumors: Basic Aspects and Emerging Clinical Applications. J Nucl Med 49(4): 573–586

    Article  PubMed  CAS  Google Scholar 

  72. Koopmans KP, Brouwers AH, De Hooge MN et al. (2005) Carcinoid crisis after injection of 6-18F-fluorodihydroxyphenylalanine in a patient with metastatic carcinoid. J Nucl Med 46(7): 1240– 1243

    PubMed  Google Scholar 

  73. Koopmans KP, de Vries EG, Kema IP et al. (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7(9): 728–734

    Article  PubMed  CAS  Google Scholar 

  74. Koopmans KP, Neels OC, Kema IP et al. (2008) Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol 26(9): 1489–1495

    Article  PubMed  Google Scholar 

  75. Körholz D, Kluge R, Wickmann L et al. (2003) Importance of F18-fluorodeoxy-D-2-glucose positron emission tomography (FDG-PET) for staging and therapy control of Hodgkin’s lymphoma in childhood and adolescence - consequences for the GPOHHD 2003 protocol. Onkologie 26(5): 489–493

    Article  PubMed  Google Scholar 

  76. Even-Sapir E, Lievshitz G, Perry C, Herishanu Y, Lerman H, Metser U (2007) Fluorine-18 fluorodeoxyglucose PET/CT patterns of extranodal involvement in patients with Non-Hodgkin lymphoma and Hodgkin΄s disease. Radiol Clin North Am 45(4): 697–709, vii

    Google Scholar 

  77. Montravers F, McNamara D, Landman-Parker J et al. (2002) [(18)F] FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging 29(9): 1155–1165

    Article  PubMed  CAS  Google Scholar 

  78. Furth C, Denecke T, Steffen I et al. (2006) Correlative imaging strategies implementing CT, MRI, and PET for staging of childhood Hodgkin disease. J Pediatr Hematol Oncol 28(8): 501–512

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vorwerk, P., Kluge, R., Redlich, A., Mohnike, K. (2011). Pädiatrie. In: PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17805-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17805-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17804-7

  • Online ISBN: 978-3-642-17805-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics