Skip to main content

Submicron Tomography Using High Energy Synchrotron Radiation

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 10))

Abstract

Development of synchrotron tomography at the end of the 20th century and the following improvements in radiation source, X-ray detectors as well as X-ray optics boosted the application of the tomographic technique in materials science. It became possible for the first time to reveal the three dimensional structure of heterogeneous materials with sub-micrometer spatial resolution, the length scale where the basic mechanisms of plastic deformation and damage are taking place and determine the macroscopic behavior of engineering components. The present chapter introduces the basic features of the tomographic method developed at synchrotron sources, related mainly to the high flux and lateral coherence of the beam. These allow performing high resolution tomographic scans within a reasonable time, but also to use the optical phase of the transmitted X-ray beam to increase the sensitivity by revealing the spatial distribution of electron density. After the introduction of the technique several application examples in the field of materials science are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spanne, P., Rivers, L.: Computerized microtomography using synchrotron radiation from the NSLS. Nucl. Instrum. Meth. Phys. Res. B 24(25), 1063–1067 (1987)

    Article  Google Scholar 

  2. Flannery, B.P., et al.: Three-dimensional X-ray microtomography. Science 237, 1439–1444 (1987)

    Article  CAS  Google Scholar 

  3. Spanne, P., Throvert, J.F., et al.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73, 2001–2004 (1994)

    Article  CAS  Google Scholar 

  4. Borbély, A., Kenesei, P., Biermann, H.: Estimation of effective properties of particle reinforced metal-matrix composites from microtomographic reconstructions. Acta Mater. 54, 2735–2744 (2006)

    Article  Google Scholar 

  5. Stock, S.R.: Micro Computed Tomography: Methodology and Applications. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  6. Banhart, J. (ed.): Advanced Tomographic Methods in Materials Research and Engineering, edited by. Oxford University Publishing, Oxford (2008)

    Google Scholar 

  7. Buffière, J.-Y., Maire, E., Cloetens, P., et al.: Characterisation of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Metall. 47, 1613–1625 (1999)

    Google Scholar 

  8. Marrow, T.J., Buffiere, J.-Y., Withers, P.J., et al.: High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron. Int. J. Fatigue 26, 717–725 (2004)

    Article  CAS  Google Scholar 

  9. Babout, L., Maire, E., Fougères, R.: Damage initiation in model metallic materials: X-ray tomography and modelling. Acta Mater. 52, 2475–2487 (2004)

    Article  CAS  Google Scholar 

  10. Maire, E., Bouaziz, O., Di Michiel, M., et al.: Initiation and growth of damage in a dual phase steel observed by X-ray microtomography. Acta Mater. 56, 4954–4964 (2008)

    Article  CAS  Google Scholar 

  11. Pyzalla, A., Camin, B., Buslaps, T., et al.: Simultaneous tomography and diffraction analysis of creep damage. Science 308, 92–95 (2005)

    Article  CAS  Google Scholar 

  12. Maire, E., Carmona, V., Courbon, J., et al.: Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests. Acta Mater. 55, 6806–6815 (2007)

    Article  CAS  Google Scholar 

  13. Cloetens, P., Ludwig, W., Baruchel, W., et al.: Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl. Phys. Lett. 75, 2912–2914 (1999)

    Article  CAS  Google Scholar 

  14. Bleuet, P., Lemelle, L., Tucoulou, R. et al.: 3D chemical imaging based on a third-generation synchrotron source. Trends Anal. Chem. 29, 518–527 (2010)

    Article  CAS  Google Scholar 

  15. Bleuet, P., Welcomme, E., Dooryhee, E., et al.: Probing the structure of heterogeneous diluted materials by diffraction tomography. Nat. Mater. 7, 468–472 (2008)

    Article  CAS  Google Scholar 

  16. Ludwig, L., King, A., Reischig, P., et al.: New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging. Mater. Sci. Eng. A 524, 69–76 (2009)

    Article  Google Scholar 

  17. Withers, P.J.: X-ray nanotomography. Mater. Today 10, 26–34 (2007)

    Article  CAS  Google Scholar 

  18. Barty, A., Marchesini, S., Chapman, H.N.: Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms. Phys. Rev. Lett. 101, 055501 (2008)

    Article  CAS  Google Scholar 

  19. Adrien, J., Maire, E., Gimenez, N., et al.: Experimental study of the compression behavior of syntactic foams by in situ X-ray tomography. Acta Mater. 55, 1667–1679 (2007)

    Article  CAS  Google Scholar 

  20. Requena, G., Degischer, H.P.: Creep behavior of reinforced and short fibre reinforced AlSi12CuMgNi piston. Mat. Sci. Eng. A-Struct. 420, 265–275 (2006)

    Article  Google Scholar 

  21. Requena, G., Degischer, H.P., Marks, E., et al.: Microtomographic study of the evolution of microstructure during creep of an AlSi12CuMgNi alloy reinforced with Al2O3 short fibres. Mat. Sci. Eng. A 487, 99–107 (2008)

    Article  Google Scholar 

  22. Marks, E., Requena, G., Degischer, H.P., et al.: Microtomography and creep model-ling of a short fibre reinforced aluminium piston alloy. Adv. Eng. Mat. (2010). doi:10.1002/adem.201000237

  23. Requena, G., Cloetens, P., Altendorfer, W., et al.: Submicrometer synchrotron tomography using Kirkpatrick-Baez optics. Scripta Mater. 61, 760–763 (2009)

    Article  CAS  Google Scholar 

  24. Mokso, R., Cloetens, P., Maire, E., et al.: Nanoscale zoom tomo-graphy with hard x rays using Kirkpatrick-Baez optics. Appl. Phys. Lett. 90, 144104 (2007)

    Article  Google Scholar 

  25. Labiche, J.C., Mathon, O., Pascarelli, S., et al.: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev. Sci. Instrum. 78, 091301 (2007)

    Article  Google Scholar 

  26. http://mmc-assess.tuwien.ac.at

  27. Kainer, U.: Basics of metal matrix composites. In: Kainer, U. (ed.) Metal Matrix Composites. Wiley-VCH, Weinheim (2006)

    Chapter  Google Scholar 

  28. Yolton, C.T.: The pre-alloyed powder metallurgy of titanium with boron and carbon additions. JOM 56-5, 56–59 (2004)

    Article  Google Scholar 

  29. Poletti, C., Warchomicka, F., Degischer, H.P.: Local deformation of Ti6Al4V modified 1 wt% B and 0.1 wt% C. Mat. Sci. Eng. A-Struct. 527, 1109–1116 (2010)

    Article  Google Scholar 

  30. Poletti, C., Requena, G., Tolnai, D. et al.: Characterization of the microstructure and damage mechanisms in a Ti6Al4V alloy modified with 1wt%B. Int. J. Mater. Res. 101, 1151–1157 (2010)

    CAS  Google Scholar 

  31. Banerjee, R., Collins, P.C., Genç, A., et al.: Direct laser deposition of in situ Ti-6Al-4V-TiB composites. Mat. Sci. Eng. A-Struct. 358, 343–349 (2003)

    Article  Google Scholar 

  32. Bauer, B., Requena, G., Lieblich, M.: Creep resistance depending on particle reinforce-ment size of Al-alloys produced by powder metallurgy. In: Proceedings of the 2009 International Conference on Powder Metallurgy & Particulate Materials (2009)

    Google Scholar 

  33. Davis, J.R.: Aluminium and Aluminium Alloys. ASM International, Specialty hand-book, Ohio (2004)

    Google Scholar 

  34. Riedel, H.: Fracture at High Temperatures, p. 70. Springer Verlag, Berlin (1987)

    Google Scholar 

  35. Chuang, T.J., Kagava, K.I., Rice, J.R., et al.: Non-equilibrium for diffusive cavitation of grain boundaries. Acta Metall. 27, 265–284 (1973)

    Google Scholar 

  36. Budiansky, B., Hutchinson, J.W., Slutsky, S.: In: Hopkins, H.G., Sewell, M.J. (eds.) Mechanics of solids. The R. Hill 60th anniversary volume. Pergamon, Oxford (1982)

    Google Scholar 

  37. Di Michiel, M., Merino, J.M., Fernandez-Carreiras, D., et al.: Fast microtomography using high energy synchrotron radiation. Rev. Sci. Instrum. 76, 1–7 (2005)

    Article  Google Scholar 

  38. De Carlo, F., Xiao, X., Tieman, B.: X-ray tomography system, automation and remote access at beamline 2-BM of the advanced photon source. Proc. SPIE 6318, 63180K (2006)

    Article  Google Scholar 

  39. Rivers, M.L., Wang, Y., Uchida, T.: Microtomography at GeoSoilEnviroCARS. Proc. SPIE 5535, 783–791 (2004)

    Article  Google Scholar 

  40. Rivers, M.L., Wang, Y.: Recent developments in microtomography at GeoSoilEnviro-CARS. Proc. SPIE 6318, 63180J (2006)

    Article  Google Scholar 

  41. Uesugi, K., Takeuchi, A., Suzuki, Y.: High-definition high-throughput micro-tomography at SPring-8. J. Phys. Conf. Ser. 186, 012050 (2009)

    Article  Google Scholar 

  42. Haibel, A., Beckmann, F., Dose, T., et al.: The GKSS beamlines at PETRA III and DORIS III. Proc. SPIE 7078, 70780Z (2008)

    Article  Google Scholar 

  43. Beckmann, F., Herzen, J., Haibel, A., et al.: High density resolution in synchrotron-radiation-based attenuation-contrast microtomography. Proc. SPIE 7078, 70781D (2008)

    Article  Google Scholar 

  44. Rack, A., Zabler, S., Müller, B.R., et al.: High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II). Nucl. Instrum. Meth. A 586, 327–344 (2008)

    Article  CAS  Google Scholar 

  45. Rack, A., Weitkamp, T., Bauer Trabelsi, S.T., et al.: The micro-imaging station of the TopoTomo beamline at the ANKA synchrotron light source. Nucl. Instrum. Meth. B 267, 1978–1988 (2009)

    Article  CAS  Google Scholar 

  46. Stampanoni, M., Grosso, A., Isenegger, A., et al.: Trends in synchrotron-based tomographic imaging: the SLS experience. Proc. SPIE 6318, 63180M (2006)

    Article  Google Scholar 

  47. Marone, F., Hintermüller, C., McDonald, S., et al.: X-ray tomographic microscopy at TOMCAT. Proc. SPIE 7078, 707822 (2008)

    Article  Google Scholar 

  48. Cloetens, P., Barrett, R., Baruchel, J., et al.: Phase objects in synchrotron radiation hard x-ray imaging. J. Phys. D Appl. Phys. 29, 133–146 (1996)

    Article  CAS  Google Scholar 

  49. Toda, H., Uesugi, K., Takeuchi, A., et al.: Three-dimensional observation of nanoscopic precipitates in an aluminum alloy by microtomography with Fresnel zone plate optics. Appl. Phys. Lett. 89, 143112 (2006)

    Article  Google Scholar 

  50. Suzuki, Y., Toda, H., Ch, Schroer.: Tomography using magnifying optics. In: Banhart, J. (ed.) Advanced Tomographic Methods in Materials Research and Engineering. Oxford University Press, Oxford (2008)

    Google Scholar 

  51. Uesugi, K., Takeuchi, A., Suzuki, Y.: Development of micro-tomography system with Fresnel zone plate optics at SPring-8. Proc. SPIE 6318, 63181F (2006)

    Article  Google Scholar 

  52. Takeuchi, A., Uesugi, K., Suzuki, A.: Zernike phase-contrast X-ray microscope with pseudo-Kohler illumination generated by sectored (polygon) condenser plate. J. Phys. Conf. Ser. 186, 012020 (2009)

    Article  Google Scholar 

  53. Kang, H., Yan, H., Winarksi, R., et al.: Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens. Appl. Phys. Lett. 92, 221114 (2008)

    Article  Google Scholar 

  54. Chu, Y.S., Yi, J.M., De Carlo, F., et al.: Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution. Appl. Phys. Lett. 92, 103119 (2008)

    Article  Google Scholar 

  55. Stampanoni, M., Marone, F., Mikuljan, G., et al.: Advanced X-ray diractive optics. J. Phys. Conf. Ser. 186, 012018 (2009)

    Article  Google Scholar 

  56. Stampanoni, M., Mokso, R., Marone, F., et al.: Phase-contrast tomography at the nanoscale using hard x-rays. Phys. Rev. B 81, 140105 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The electron microscopy images were obtained at the University Service for Transmission Electron Microscopy (USTEM) of the Vienna University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Borbély .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borbély, A., Cloetens, P., Maire, E., Requena, G. (2011). Submicron Tomography Using High Energy Synchrotron Radiation. In: Lasagni, F., Lasagni, A. (eds) Fabrication and Characterization in the Micro-Nano Range. Advanced Structured Materials, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17782-8_7

Download citation

Publish with us

Policies and ethics