Skip to main content

Exploring the Possibilities of Laser Interference Patterning for the Rapid Fabrication of Periodic Arrays on Macroscopic Areas

  • Chapter
  • First Online:
Fabrication and Characterization in the Micro-Nano Range

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 10))

Abstract

Surface patterning engineering techniques are essential to fabricate advanced topographies that can be use to modulate macroscopic properties on different materials. Particularly, Laser Interference methods enable fabrication of repetitive periodic arrays and microstructures by irradiation of the sample surface with coherent beams of light. Depending on the used laser source, different methods have emerged in the last years including Laser Interference Lithography and Direct Laser Interference Patterning. A detailed description of these techniques is presented in this chapter. In addition, several examples including fabrication of micro and sub-micrometer patterns on photoresists, conducting polymers and carbon nanotubes are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganesh, N., Block, I.D., Cunningham, B.T.: Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio. Appl. Phys. Lett. 89, 023901–023904 (2006)

    Article  Google Scholar 

  2. Yu, H., Balogun, O., Li, B., Murray, T.W., Zhang, X.: Building embedded microchannels using a single layered SU-8, and determining Young’s modulus using a laser acoustic technique. J. Micromech. Microeng. 14(11), 1576–1584 (2004)

    Article  Google Scholar 

  3. Ryu, W.H., Min, S.W., Hammerick, K.E., Vyakarnam, M., Greco, R.S., Prinz, F.B., Fasching, R.J.: The construction of three dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers. Biomaterials 28, 1174–1184 (2007)

    Article  CAS  Google Scholar 

  4. Bhatia, S.N., Chen, C.S.: Tissue engineering at the micro-scale. Biomed. Microdev. 2, 131–141 (1999)

    Article  Google Scholar 

  5. Hammerick, K., Ryu, W., Fasching, R., Bai, S., Smith, R., Greco, R.: Synthesis of Cell Structures. In: Greco, R.S., Prinz, F.B., Smith, R.S. (eds.) Nanoscale Technology in Biological Systems, pp. 73–101. CRC Press, Boca Raton (2005)

    Google Scholar 

  6. Zhang, J., Venkataramani, S., Xu, H., Song, Y.-K., Song, H.K., Palmore, G., Fallon, J., Nurmikko, A.V.: Combined topographical and chemical micropatterning of neural template for cultured hippocampal neurons. Biomaterials 27, 5734 (2006)

    Article  CAS  Google Scholar 

  7. Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

    Article  CAS  Google Scholar 

  8. Duarte, M., Lasagni, A., Giovanelli, R., Narciso, J., Louis, E., Mücklich, F.: Increasing lubricant lifetime by grooving periodical patterns using laser interference metallurgy. Adv. Eng. Mater. 10, 554–558 (2008)

    Article  CAS  Google Scholar 

  9. Lasagni, A., Nejati, M.R., Clasen, R., Mücklich, F.: Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers. Adv. Eng. Mater. 6, 580–584 (2006)

    Article  Google Scholar 

  10. Bertsch, A., Jiguet, S., Renaud, P.: Microfabrication of ceramic components by microstereolithography. J. Micromech. Microeng. 14, 197–203 (2004)

    Article  CAS  Google Scholar 

  11. Meriche, F., Neiss-Clauss, E., Kremer, R., Boudrioua, A., Dogheche, E., Fogarassy, E., Mouras, R., Bouabellou, A.: Micro structuring of LiNbO3 by using nanosecond pulsed laser ablation. Appl. Surf. Sci. 254, 1327–1331 (2007)

    Article  CAS  Google Scholar 

  12. Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G., Turberfield, A.J.: Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000)

    Article  CAS  Google Scholar 

  13. Kondo, T., Juodkazis, S., Mizeikis, V., Misawa, H.: Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8. Opt. Exp. 14, 7943–7953 (2006)

    Article  CAS  Google Scholar 

  14. Lasagni, A., Holzapfel, C., Weirich, T., Mücklich, F.: Laser interference metallurgy: a new method for periodic surface microstructure design on multilayered metallic thin films. Appl. Surf. Sci. 253, 8070–8074 (2007)

    Article  CAS  Google Scholar 

  15. Zhu, X., Xu, Y., Yang, S.: Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography with umbrella configuration. Opt. Exp. 15, 16546–16560 (2007)

    Article  Google Scholar 

  16. Miklyaev, Yu, V., Meisel, D.C., Blanco, A., von Freymann, G., Busch, K., Koch, W., Enkrich, C., Deubel, M., Wegener, M.: Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Appl. Phys. Lett. 82, 1284–1286 (2003)

    Article  CAS  Google Scholar 

  17. Tan, C., Peng, C.S., Petryakov, V.N., Verevkin, Y.K., Zhang, J., Wang, Z., Olaizola, S.M., Berthou, T., Tisserand, S., Pessa, M.: Line defects in two-dimensional four-beam interference patterns. New J. Phys. 10, 023023 (2008)

    Article  Google Scholar 

  18. Mücklich, F., Lasagni, A., Daniel, C.: Laser interference metallurgy-periodic surface patterning and formation of intermetallics. Intermetallics 13, 437–442 (2005)

    Article  Google Scholar 

  19. Lasagni, A., Hendricks, J.L., Shaw, C.M., Yuan, D., Martin, D.C., Das, S.: Direct laser interference patterning of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) thin films. Appl. Surf. Sci. 255, 9186–9192 (2009)

    Article  CAS  Google Scholar 

  20. Lasagni, A.: Large area fabrication of micro and nano periodic structures on polymers by direct laser interference patterning. In: Proceedings of the 17. Neues Dresdner Vakuumtechnisches Kolloquium, Dresden, October 30–31, 15–19 (2009)

    Google Scholar 

  21. Lasagni, A., Shao, P., Hendricks, J.L., Shaw, C.M., Yuan, D., Martin, D.C., Das, S.: Direct fabrication of periodic patterns with hierarchical sub-wavelength structures on poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate) thin films using femtosecond laser interference patterning. Appl. Surf. Sci. 256(6), 1708–1713 (2010)

    Article  CAS  Google Scholar 

  22. Zheng, M., Yu, M., Liu, Y., Skomski, R., Liou, S.H., Sellmyer, D.J., Petryakov, V.N., Verevkin, Yu, K., Polushkin, N.I., Salashchchenko, N.N.: Salashchchenko, Magnetic Nanodot Arrays Produced by Direct Laser Interference Lithography. Appl. Phys. Lett. 79, 2606 (2001)

    Article  CAS  Google Scholar 

  23. Lasagni, A., Mücklich, F.: Study of the multilayer metallic films topography modified by laser interference irradiation. Appl. Surf. Sci. 240, 214–221 (2005)

    Article  CAS  Google Scholar 

  24. Mücklich, F., Lasagni, A., Daniel, C.: Laser interference metallurgy - using interference as a tool for micro/nano structuring. Zeit. für Metallk. 97, 1337–1344 (2006)

    Google Scholar 

  25. Mützel, M., Tandler, S., Haubrich, D., Meschede, D., Peithmann, K., Flaspöhler, M., Buse, K.: Atom lithography with a holographic light mask. Phys. Rev. Lett. 88(8), 83601 (2002)

    Article  Google Scholar 

  26. Lasagni, A., Menéndez-Ormaza, B.: How to fabricate two and three dimensional micro and sub-micrometer periodic structures using two-beam Laser Interference Lithography. Adv. Eng. Mater. 12(1–2), 54–60 (2010)

    Article  CAS  Google Scholar 

  27. Cheng Lu, R., Lipson, H.: Interference lithography: a powerful tool for fabricating periodic structures. Laser Photon. Rev. 4, 568–580 (2009)

    Google Scholar 

  28. Moon, J.H., Ford, J., Yang, S.: Fabricating three-dimensional polymer photonic structures by multi-beam interference lithography. Polym. Adv. Technol. 17(2), 83–93 (2006)

    Article  CAS  Google Scholar 

  29. Seidemann, V., Rabe, J., Feldmann, M., Buttgenbach, S.: SU8-micromechanical structures with in situ fabricated movable parts. Microsys. Technol. 8(4), 348–350 (2002)

    Article  Google Scholar 

  30. Rubner, R.: Photoreactive polymers for electronics. Adv. Mater. 2(10), 452–457 (1990)

    Article  CAS  Google Scholar 

  31. Kuiper, S., van Wolferen, H., van Rijn, C., Nijdam, W., Krijnen, G., Elwenspoek M.: Fabrication of microsieves with sub-micron pore size by laser interference lithography. J. Micromech. Microeng. 11(1), 33–37 (2001)

    Article  CAS  Google Scholar 

  32. Carter, J.M., Fleming, R.C., Savas, T.A., Walsh, M.E., O’Reilly, T.B., Schattenburg, M.L., Smith, H.I.: Interference lithography. MTL Annual report (2003)

    Google Scholar 

  33. Hoffnagle, J.A., Hinsberg, W.D., Sanchez, M., Houle, F.A.: Liquid immersion deep-ultraviolet interferometric lithography. J. Vac. Sci. Technol. B17, 3306–3309 (1999)

    Google Scholar 

  34. Switkes, M., Rothschild, M.: Immersion lithography at 157nm. J. Vac. Sci. Technol. B19, 2353–2356 (2001)

    Google Scholar 

  35. Burnett, J.H., Kaplan, S.G.: Measurement of the refractive index and thermooptic coefficient of water near 193 nm. J. Microlith. Microfab. Microsys. 3, 68–72 (2004)

    Article  CAS  Google Scholar 

  36. Raub, A.K., Brueck, S.R.J.: Deep UV immersion interferometric lithography. Proc. SPIE 5040, 667–678 (2003)

    Article  CAS  Google Scholar 

  37. Raub, A.K., Frauenglass, A., Brueck, S.R.J., Conley, W., Dammel, R., Romano, A., Sato, M., Hinsberg, W.: Imaging capabilities of resist in deep-UV liquid immersion interferometric lithography. J. Vac. Sci. Technol. 22, 3459–3464 (2004)

    Article  CAS  Google Scholar 

  38. Divliansky, I.B., Shishido, A., Khoo, I., Mayer, T.S., Pena, D., Nishimura, S., Keating, C.D., Mallouk, T.E.: Fabrication of two dimensional photonic crystals using interference lithography and electrodeposition of CdSe. Appl. Phys. Lett. 79, 3392–3394 (2001)

    Article  CAS  Google Scholar 

  39. Lu, C., Hu, X., Mitchell, I., Lipson, R.: Diffraction element assisted lithography: Pattern control for photonic crystal fabrication. Appl. Phys. Lett. 86, 193111–193113 (2005)

    Article  Google Scholar 

  40. Wu, D., Fang, N., Sun, C., Zhang, X.: Stiction problems in releasing of 3D microstructures and its solution. Sens. Actuators A 128, 109–115 (2006)

    Article  Google Scholar 

  41. Vora, K.D., Peele, A.G., Shew, B.Y., Harvey, E.C., Hayes, J.P.: Fabrication of support structures to prevent SU-8 stiction in high aspect ratio structures. Microsyst. Technol. 13, 487–493 (2007)

    Article  CAS  Google Scholar 

  42. Itani, T., Yoshino, H., Hashimoto, S., Yamana, M., Samoto, N., Kasama, K.: A study of acid diffusion in chemically amplified deep ultraviolet resist. J. Vac. Sci. Technol. B 14, 4226–4228 (1996)

    Article  CAS  Google Scholar 

  43. Yoon, Y.-K., Park, J.-H., Allen, M.G.: Multidirectional UV Lithography for Complex 3-D MEMS Structures. J. Micromech. Microeng. 15, 1121–1130 (2006)

    Google Scholar 

  44. Sato, H., Kakinuma, T., Go, J.S., Shoji, S.: In-channel 3-D micromesh structures using maskless multi-angle exposure and their microfilter application. Sens. Actuators A 111, 87–92 (2004)

    Article  Google Scholar 

  45. Miyake, M., Chen, Y.-C., Braun, P.V., Wiltzius, P.: Fabrication of three-dimensional photonic crystals using multibeam interference lithography and electrodeposition. Adv. Mater. 21, 3012–3015 (2009)

    Article  CAS  Google Scholar 

  46. Drezet, J.M., Pellerin, S., Bezençon, C., Mokadem, S.: Modelling the Marangoni convection in laser heat treatment. J. Phys. IV France 120, 299–306 (2004)

    CAS  Google Scholar 

  47. von Allmen, M., Blatter, A.: Laser-beam interactions with materials–physical principles and applications, 2nd edn. Springer-verlag, Heidelberg (1995)

    Google Scholar 

  48. Lasagni, A., Yuan, D., Shao, P., Das, S.: Periodic Micropatterning of polyethylene glycol diacrylate hydrogel by laser interference lithography using nano- and femtosecond pulsed lasers. Adv. Eng. Mater. 11(3), B20–B24 (2009)

    Article  Google Scholar 

  49. Lasagni, A., Cross, R., Graham, S., Das, S.: Fabrication of high aspect ratio carbon nanotube arrays by direct laser interference patterning. Nanotechnology 20, 245305–245312 (2009)

    Article  Google Scholar 

  50. Bonard, J.M., Salvetat, J.P., Stockli, T., de Heer, W.A., Forro, L., Chatelain, A.: Field emission from single-wall carbon nanotube films. Appl. Phys. Lett. 73, 918–920 (1998)

    Article  CAS  Google Scholar 

  51. Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)

    Article  CAS  Google Scholar 

  52. Dai, H., Franklin, N., Han, J.: Exploiting the properties of carbon nanotubes for nanolithography. Appl. Phys. Lett. 73, 1508–1510 (1998)

    Article  CAS  Google Scholar 

  53. Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.: Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1999)

    Article  CAS  Google Scholar 

  54. Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W., Chang, R.P.H.: A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72, 2912–2913 (1998)

    Article  CAS  Google Scholar 

  55. Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M.: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998)

    Article  CAS  Google Scholar 

  56. Bieda, M., Beyer, E., Lasagni, A.F.: Direct fabrication of hierarchical microstructures on metals by means of direct laser interference patterning. J. Eng. Mater. Technol. 132, 031015–031021 (2010)

    Article  Google Scholar 

  57. Jiang, C., Ko, H., Tsukruk, V.V.: Strain sensitive Raman modes of carbon nanotubes in deflecting freely suspended nanomembranes. Adv. Mater. 17, 2127–2131 (2005)

    Article  CAS  Google Scholar 

  58. Jorio, A., Pimenta, M.A., Souza Filho, A.G., Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 5, 139–156 (2003)

    Article  Google Scholar 

  59. Maznev, A.A., Crimmins, T.F., Nelson, K.A.: How to make femtosecond pulses overlap. Opt. Lett. 23, 1378–1380 (1998)

    Article  CAS  Google Scholar 

  60. Nakata, Y., Okada, T., Maeda, M.: Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams. Appl. Phys. Lett. 81, 4239–4241 (2002)

    Article  CAS  Google Scholar 

  61. Nakata, Y., Okada, T., Maeda, M.: Lithographical laser ablation using femtosecond laser. Appl. Phys. A 79, 1481–1483 (2004)

    CAS  Google Scholar 

  62. Tan, B., Sivakumar, N.R., Venkatakrishnan, K.: Direct grating writing using femtosecond laser interference fringes formed at the focal point. J. Opt. A Pure Appl. Opt. 7, 169–174 (2005)

    Article  Google Scholar 

  63. Kondo, T., Matsuo, S., Juodkazis, S., Mizeikis, V.: Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses. Appl. Phys. Lett. 82, 2758–2760 (2003)

    Article  CAS  Google Scholar 

  64. Kondo, T., Matsuo, S., Juodkazis, S., Misawa, H.: Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals. Appl. Phys. Lett. 79, 725–727 (2001)

    Article  CAS  Google Scholar 

  65. Beaupre, S., Leclerc, M.: Optical and electrical properties of π-conjugated polymers based on electron-rich 3,6-dimethoxy-9,9-dihexylfluorene unit. Macromolecules 36, 8986–8991 (2003)

    Article  CAS  Google Scholar 

  66. Yang, J.Y., Kim, D.H., Hendricks, J.L., Leach, M., Northey, R., Martin, D.C.: Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes. Acta Biomater. 1, 125–136 (2005)

    Article  Google Scholar 

  67. Aernouts, T., Vanlaeke, P., Geens, W., Poortmans, J., Heremans, P., Borghs, S., Mertens, R., Andriessen, R., Leenders, L.: Printable anodes for flexible organic solar cell modules. Thin Solid Films 22, 451–452 (2004)

    Google Scholar 

  68. Khomenko, V.G., Barsukov, V.Z., Katashinkii, A.S.: The catalytic activity of conducting polymers toward oxygen reduction. Electrochim. Acta 50, 1675–1683 (2005)

    Article  CAS  Google Scholar 

  69. Xiao, Y., Takashi, I., Higgins, D.A.: Grayscale patterning of polymer thin films with nanometer precision by direct-write multiphoton photolithography. Langmuir 24, 8939–8943 (2008)

    Article  Google Scholar 

  70. García-Navarro, A., Agulló-López, F., Olivares, J., Lamela, J., Jaque, F.: Femtosecond laser and swift-ion damage in lithium niobate: a comparative analysis. J. Appl. Phys. 103, 093540 (2008)

    Article  Google Scholar 

  71. Sohn, I.-B., Noh, Y.-C., Choi, S.-C., Ko, D.-K., Lee, J., Choi, Y.-J.: Femtosecond laser ablation of polypropylene for breathable film. Appl. Surf. Sci. 254, 4919–4924 (2008)

    Article  CAS  Google Scholar 

  72. Vorobyeb, A., Guo, C.: Change in absorptance of metals following multi-pulse femtosecond laser ablation. J. Phys. 59, 579–584 (2007)

    Google Scholar 

  73. Reif, J., Costache, F., Henyk, M., Pandelov, S.V.: Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 197–198, 891–895 (2002)

    Article  Google Scholar 

  74. Guillermin, M., Garrelie, F., Sanner, N., Audouard, E., Soder, H.: Single- and multi-pulse formation of surface structures under static femtosecond irradiation. Appl. Surf. Sci. 253, 8075–8079 (2007)

    Article  CAS  Google Scholar 

  75. van Driel, H.M., Sipe, J.E., Young, J.F.: Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon. Phys. Rev. Lett. 49, 1955–1958 (1982)

    Article  Google Scholar 

  76. Young, J.F., Preston, J.S., van Driel, H.M., Sipe, J.E.: Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 27, 1155–1172 (1983)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the contributions of: M. Beida, B.S Menéndez-Ormaza from the Fraunhofer Institute for Material and Beam Technology (Germany); D. Yuan, P. Shao, S. Das, R. Crosss, S. Graham from Georgia Institute of Technology (USA), and J. Hendricks, C.M. Shaw and D. Martin from the University of Michigan (USA). This work was financially supported by Alexander von Humboldt Foundation and the Fraunhofer Association (Grant No. Attract 692174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Fabián Lasagni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lasagni, A.F. (2011). Exploring the Possibilities of Laser Interference Patterning for the Rapid Fabrication of Periodic Arrays on Macroscopic Areas. In: Lasagni, F., Lasagni, A. (eds) Fabrication and Characterization in the Micro-Nano Range. Advanced Structured Materials, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17782-8_1

Download citation

Publish with us

Policies and ethics