Skip to main content

Electrified Ionic Liquid/Solid Interfaces

  • Chapter
  • First Online:
Coulombic Fluids

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 168))

  • 838 Accesses

Abstract

At an electrified interface the double-layer problem plays a key role. Its characteristics for ionic liquids are discussed on the basis of recent experimental and theoretical investigations and are contrasted with the classical GCS model for aqueous electrolytes. Emphasis of this chapter is on 2D and 3D electrochemical phase formation and growth at the ionic liquid/electrode interface studied by in situ scanning probe methods. The concept of underpotential (UPD) deposition is briefly introduced and for the example of Ag UPD on Au(111) the different behaviour in an ionic liquid and aqueous electrolytes is described. Phenomena of surface alloying and the underlying spinodal mechanism are treated in more detail. The characteristic spinodal structures and their evolution during surface alloying in Zn − Au(111) and Cd − Au(111) are presented. Nanoscale electrochemical phase formation and growth of metal and semiconductor clusters from ionic liquid electrolytes is the topic of the last section. Selected examples are Al electrodeposition on Si(111):H, Ni, and Fe nanocrystal growth; Co − Al bulk alloying; and AlSb and ZnSb compound semiconductor deposition. The chapter ends with an example of a thickness induced metal–nonmetal transition in ultrathin Ge films electrodeposited on Au(111) or Si(111):H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The solid electrode can be metal, semi-metal such as highly oriented pyrolytic graphite (HOPG), or semiconductor, but here we focus on metal electrodes.

References

  1. A.J. Bard, L.R. Faulkner,Electrochemical Methods, Fundamentals and Applicationsk, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  2. A.D. Graves, D.J. Inman, (1970) J. Electroanal. Chem.25, 357

    Article  Google Scholar 

  3. V. Locket, R. Sedev, J. Ralston, M. Honn, T. Rodopoulos, J. Phys. Chem. C112, 7486 (2008)

    Article  Google Scholar 

  4. M.M. Islam, M.T. Alam, T. Ohsaka, J. Phys. Chem. C112, 16568 (2008)

    Article  Google Scholar 

  5. S. Baldelli, Phys. Chem. B109, 13049 (2005)

    Article  Google Scholar 

  6. Y.Z. Su, Y.C. Fu, J.W. Yan, Z.B. Chen, B.W. Mao, Angew. Chem. Int. Ed.48, 1 (2009)

    Article  Google Scholar 

  7. J.L. Siepmann, M. Sprik, J. Chem. Phys.102, 511 (1995)

    Article  ADS  Google Scholar 

  8. S.K. Reed, P.A. Madden, A. Papadopoulos, J. Chem. Phys.128, 12470 (2008)

    Article  Google Scholar 

  9. M. Pounds, S. Tazi, M. Salame, P.A. Madden, J. Phys. Condens. Matter.21, 1 (2009)

    Article  Google Scholar 

  10. S. Lamperski, C.W. Outhwaite, L.B. Bhuiyan, J. Phys. Chem. B113, 8925 (2009)

    Article  Google Scholar 

  11. M.V. Fedorov, A.A. Kornyshev, J. Phys. Chem. B112, 11868 (2008)

    Article  Google Scholar 

  12. A.A. Kornyshev, J. Phys. Chem. B111, 5545 (2007)

    Article  Google Scholar 

  13. D.M. Kolb, J. Schneider, Electrochimica. Acta.31, 929 (1986)

    Article  Google Scholar 

  14. G.B. Pan, W. Freyland, Chem. Phys. Lett.427, 96 (2006)

    Article  ADS  Google Scholar 

  15. Endres F, MacFarlane D, Abott A, eds.Electrodeposition from Ionic Liquids, (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  16. W. Freyland, C.L. Aravinda, D. Borissov, InElectrocrystallization in Nanotechnology, ed. by G Staikov, (Wiley-VCH, Weinheim, 2007) p. 79–96

    Google Scholar 

  17. E. Budevski, G. Staikov, W.J. Lorenz,Electrochemical Phase Formation and Growth (VCH, Weinheim, 1996)

    Book  Google Scholar 

  18. D. Borissov, C.L. Aravinda, W. Freyland, J. Phys. Chem. B109, 11606 (2005)

    Article  Google Scholar 

  19. K. Itaya, Nanotechnology3, 185 (1992)

    Article  ADS  Google Scholar 

  20. M.J. Esplandin, M.A. Schnweeweiss, D.M. Kolb, Phys. Chem. Chem. Phys.1, 4847 (1999)

    Article  Google Scholar 

  21. D. Borissov, PhD Thesis, University of Karlsruhe, Germany, 2005

    Google Scholar 

  22. C.H. Chen, S.M. Vesecky, A.A. Gewirth, J. Am. Chem. Soc.114, 451 (1992)

    Article  Google Scholar 

  23. J.W. Cahn, Trans. Met. Soc. AIME242, 166 (1968)

    Google Scholar 

  24. J.W. Cahn, J.E. Hilliard, J. Chem. Phys.31, 688 (1959)

    Article  ADS  Google Scholar 

  25. J.W. Cahn, J. Chem. Phys.42, 93 (1965)

    Article  ADS  Google Scholar 

  26. W.W. Pai, J.F. Wendelken, C.R. Stoldt, P.A. Thiel, J.W. Evans, D.J. Liu, Phys. Rev. Lett.86, 3088 (2001)

    Article  ADS  Google Scholar 

  27. G. Ge, L. Brus, J. Phys. Chem. B104, 9573 (2000)

    Article  Google Scholar 

  28. R. Schuster, D. Thron, M. Binetti, X. Xia, G. Ertl, Phys. Rev. Lett.91, 066101 (2003)

    Article  ADS  Google Scholar 

  29. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature410, 450 (2001)

    Article  ADS  Google Scholar 

  30. J. Dogel, W. Freyland, Phys. Chem. Chem. Phys.5, 2484 (2003)

    Article  Google Scholar 

  31. G.B. Pan, W. Freyland, Phys. Chem. Chem. Phys.9, 3286 (2007)

    Article  Google Scholar 

  32. C.A. Zell, W. Freyland, Chem. Phys. Lett.337, 3095 (2001)

    Article  Google Scholar 

  33. W.R. Pittner, L. Hussey Ch, J. Electrochem. Soc.144, 3095 (1997)

    Article  Google Scholar 

  34. S.G. Garcia, D.R. Salinas, G. Staikov, Surf. Sci.576, 9 (2005)

    Article  ADS  Google Scholar 

  35. A. Popov, N. Dimitrov, D. Kashshiev, T. Vitanov, E. Budevski, Electrochimica. Acta.34, 269 (1988)

    Article  Google Scholar 

  36. J. Dogel, R. Tsekov, W. Freyland, J. Chem. Phys.122, 094703–1 (2005)

    Google Scholar 

  37. K. Itaya, E. Tomita, Surf. Sci.201, L507 (1988)

    Article  ADS  Google Scholar 

  38. J. Wiechers, T. Twomey, D.M. Kolb, R.J. Behm, J. Electroanal. Chem. Interfacial. Electrochem.248, 451 (1988)

    Article  Google Scholar 

  39. A.A. Gewirth, A.J. Bard, J. Phys. Chem.92, 5363 (1988)

    Article  Google Scholar 

  40. F.R. Fan, A.J. Bard, J. Electrochem. Soc.136, 3216 (1989)

    Article  Google Scholar 

  41. O.M. Magnussen, J. Hotlos, R.J. Nichols, D.M. Kolb, R.J. Behm, Phys. Rev. Lett.64, 2929 (1990)

    Article  ADS  Google Scholar 

  42. F. Endres, W. Freyland, B. Gilbert, Ber. Bunsenges. Phys. Chem.101, 1075 (1997)

    Google Scholar 

  43. C.A. Zell, F. Endres, W. Freyland, Phys. Chem. Chem. Phys.1, 697 (1999)

    Article  Google Scholar 

  44. R.J. Hamers, D.F. Padowitz, inScanning Probe Microscopy and Spectroscopy, ed. by D.A. Bonnell (Wiley-VCH, New York, 2001)

    Google Scholar 

  45. C.L. Aravinda, B. Burger, W. Freyland, Chem. Phys. Lett.434, 271 (2007)

    Article  ADS  Google Scholar 

  46. P. Allongue, C.H. De Villeneuve, S. Morin, R. Bonkherroub, D.D.M. Wagner, Electrochimica. Acta.45, 4591 (2000)

    Article  Google Scholar 

  47. C.L. Aravinda, I. Mukhopadhyay, W. Freyland, Phys. Chem. Chem. Phys.6, 5225 (2004)

    Article  Google Scholar 

  48. C.A. Zell, W. Freyland, Langmuir19, 7445 (2003)

    Article  Google Scholar 

  49. R.T. Carlin, P.C. Trulove, H.C. De Long, J. Electrochem. Soc.143, 2747 (1996)

    Article  Google Scholar 

  50. J.A. Mitchell, W.R. Pitner, C.L. Hussey, G.R. Stafford, J. Electrochem. Soc.143, 3448 (1996)

    Article  Google Scholar 

  51. O. Mann, W. Freyland, J. Phys. Chem. C111, 9832 (2007)

    Article  Google Scholar 

  52. C.A. Ross, M. Farhoud M Shina, J.Y. Cheny, T.A. Savas, I.H. Smith, W. Schwarzacher, F.M. Ross, M. Redjdal, F.B. Humphrey, Phys. Rev.B 65, 144417 (2002)

    Google Scholar 

  53. C.L. Aravinda, W. Freyland, Chem. Commun.23, 2754 (2004)

    Article  Google Scholar 

  54. B.R. Scharifker, J. Mostany, M. Palomar-Pardavé, I. Gonzalez, J. Electrochem. Soc.146, 1005 (1999)

    Article  Google Scholar 

  55. M. Palomar-Pardavé, I. Gonzalez, N. Batina, J. Phys. Chem. B104, 3545 (2000)

    Article  Google Scholar 

  56. C.L. Aravinda, W. Freyland, Chem. Comm.16, 1703 (2006)

    Article  Google Scholar 

  57. O. Mann, W. Freyland, Electrochimica. Acta.53, 518 (2007)

    Article  Google Scholar 

  58. S.M. Sze,Physics of Semiconductor Devices, 2nd edn. (Wiley Interscience, New York, 1981)

    Google Scholar 

  59. O. Mann, C.L. Aravinda, W. Freyland, J. Phys. Chem. B110, 21521 (2006)

    Article  Google Scholar 

  60. E.K. Arushanov, Progr. Cryst. Growth Charact.13, 1 (1986)

    Article  Google Scholar 

  61. R.M. Feenstra, Phys. Rev. B50, 4561 (1994)

    Article  ADS  Google Scholar 

  62. J.J. Tu, C.C. Homes, M. Strongin, Phys. Rev. Lett.90, 017401–1 (2003)

    Article  ADS  Google Scholar 

  63. F. Liu, F. Wu, M.G. Lagally, Chem. Rev.97, 1045 (1997)

    Article  Google Scholar 

  64. I. Mukhopadhyay, W. Freyland, Chem. Phys. Lett.377, 223 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Freyland .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freyland, W. (2011). Electrified Ionic Liquid/Solid Interfaces. In: Coulombic Fluids. Springer Series in Solid-State Sciences, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17779-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17779-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17778-1

  • Online ISBN: 978-3-642-17779-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics