Skip to main content

Stagnant Vortex Flow

  • Conference paper
  • 927 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 115))

Abstract

With the aid of the vorticity transport equation it is shown that in inviscid, incompressible, axially symmetric vortex flow the axial vorticity component near the axis of the vortex approaches zero if the axial velocity component approaches a stagnation point, and vice versa, the axial vorticity component is increased, if the axial flow is accelerated. This result, obtained in earlier investigations by simplifying the momentum equations for the neighbourhood of the axis of the vortex, is already contained in the vorticity transport equation as formulated by von Helmholtz in 1858. In laminar flow, with viscous forces acting near the stagnation point, the angular velocity does not necessarily vanish with the axial velocity component. These questions are discussed in the following.

Originally published in Acta Mechanica 209, pp. 345-351 (2010).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. reine angew. Math. 55, 25–55 (1858)

    MATH  Google Scholar 

  2. Shukowski, N.J.: Theoretische Grundlagen der Luftfahrt. GTI, Moscow (1925)

    Google Scholar 

  3. Fromm, J.E.: A method for computing nonsteady, incompressible viscous fluid flows, LA-2910, UC-32, Mathematics and Computers, TID-4500, 21th edn. (1963)

    Google Scholar 

  4. Peckham, D.H., Atkinson, S.A.: Preliminary results of low speed wind tunnel tests on a Gothic wing of aspect ratio 1.0., Aero. Res. Counc. CP 508 (1957)

    Google Scholar 

  5. Krause, E.: A contribution to the problem of vortex breakdown. Comput. Fluids 13, 375–381 (1985)

    Article  MATH  Google Scholar 

  6. Krause, E., Gersten, K. (eds.): Dynamics of Slender Vortices, Proceedings of the IUTAM Symposium held in Aachen, Germany, August 31-September 3. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  7. Thomer, O., Klaas, M., SchrÃűder, W., Krause, E.: Oblique shock vortex interaction over a wedge. In: Bathe, K.J. (ed.) Proceedings of the MIT Conference on Computational Fluid and Solid Mechanics, Computational Fluid and Solid Mechanics 2003, June 17-20, pp. 1156–1159. Elsevier, Amsterdam (2003)

    Google Scholar 

  8. Sarpkaya, T.: Vortex breakdown in swirling conical flows. AIAA J. 9, 1792–1799 (1971)

    Article  Google Scholar 

  9. Hall, M.G.: Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195–218 (1972)

    Article  Google Scholar 

  10. Leibovich, S.: The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221–245 (1978)

    Article  Google Scholar 

  11. Krause, E., Gersten, K. (eds.): Dynamics of Slender Vortices, Proceedings of the IUTAM Symposium held in Aachen, Germany, August 31-September 3. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  12. Shi, X.: Numerische Simulation des Aufplatzens von Wirbeln, Diss. RWTH Aachen (1983)

    Google Scholar 

  13. Kiesewetter, F., Konle, M., Sattelmayer, T.: Analysis of combustion induced vortex breakdown driven flame flashback in a premix burner with cylindrical mixing zone. J. Eng. Gas Turbines Power 129, 929–936 (2007)

    Article  Google Scholar 

  14. Göde, E., Ruprecht, A., Lippold, F.: On the part load vortex in draft tubes of hydro electric power plants. In: Krause, E., Shokin, Y.I., Resch, M., Shokina, N. (eds.) Computational Science and High Performance Computing II. The 2nd Russian-German Advanced Research Workshop, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), Stuttgart, Germany, March 14-16, vol. 91, pp. 217–231 (2006)

    Google Scholar 

  15. Widenhorn, A., Noll, R., Aigner, M.: Numerical characterization of the reacting flow in a swirled gasturbine model. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds.) High Performance Computing in Science and Engineering 2008, Transactions of the High Performance Computing Center Stuttgart, pp. 365–380 (2009)

    Google Scholar 

  16. Schlechtriem, S., Lötzerich, M.: Breakdown of tip leakage vortices in compressors at flow conditions close to stall. In: Proceedings of IGTI-ASME Conference, Orlando, Florida, USA (June 1997)

    Google Scholar 

  17. Kandil, O.A., Massey, S.J., Sheta, E.F.: Structural dynamics/CFD Interaction for computation of vertical tail buffet. In: Proceedings of International Forum on Aeroelasticty and Structural Dynamics, Royal Aeronautical Society, Manchester, U. K., also published in Royal Aeron. J., vol. 100, pp. 297–303 (1996)

    Google Scholar 

  18. Krause, E.: Axial flow in slender vortices. J. Eng. Thermophys 11(3), 229–242 (2002)

    MathSciNet  Google Scholar 

  19. Klass, M.: Experimental investigation of shock vortex interaction, Diss. Aerodyn. Inst., RWTH Aachen (2002)

    Google Scholar 

  20. Krause, E.: On the analogy to the area-velocity relation of gasdynamics in slender vortices. Acta Mech. 201, 23–30 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krause, E.: Breakdown revisited. In: Bathe, K.J. (ed.) Proceedings of the Third MIT Conference on Computational Fluid and Solid Mechanics, Computational Fluid and Solid Mechanics 2005, June 14-17, pp. 706–709. Elsevier, Amsterdam (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krause, E. (2011). Stagnant Vortex Flow. In: Krause, E., Shokin, Y., Resch, M., Kröner, D., Shokina, N. (eds) Computational Science and High Performance Computing IV. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17770-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17770-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17769-9

  • Online ISBN: 978-3-642-17770-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics