Skip to main content

A Cartesian Cut-Cell Solver for Compressible Flows

  • Conference paper

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 115))

Abstract

A Cartesian cut-cell solver is presented to simulate two- and three-dimensional viscous, compressible flows on arbitrarily refined graded meshes. The finite-volume method uses cut cells at the boundaries rendering the method strictly conservative and is flexible in terms of shape and size of embedded boundaries. A linear least-squares method is used to reconstruct the cell center gradients in irregular regions of the mesh such that the surface flux can be formulated. The accuracy of the method is demonstrated for the three-dimensional laminar flow past a sphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. De Zeeuw, D., Powell, K.: An adaptively refined Cartesian mesh solver for the Euler equations. J. Comput. Phys. 104, 56–68 (1993)

    Article  MATH  Google Scholar 

  3. Ghias, R., Mittal, R., Dong, H.: A sharp interface immersed boundary method for compressible viscous flows. J. Comput. Phys. 225, 528–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput. Fluids 37, 1103–1125 (2008)

    Article  MathSciNet  Google Scholar 

  5. Hunt, J., Wray, A., Moin, P.: Eddies, stream, and convergence zones in turbulent flows. Center for turbulence research report CTR-S88 (1988)

    Google Scholar 

  6. Johnson, T., Patel, V.: Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 19–70 (1999)

    Article  Google Scholar 

  7. Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  9. Liou, M.S., Steffen Jr., C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Marella, S., Krishnan, S., Liu, H., Udaykumar, H.: Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations. J. Comput. Phys. 210, 1–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulation. Comput. Fluids 31, 695–718 (2002)

    Article  MATH  Google Scholar 

  12. Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A., von Loebbecke, A.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227, 4825–4852 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mittal, R., Iaccarino, G.: Immersed boundary methods. Ann. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  14. Peskin, C.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ye, T., Mittal, R., Udaykumar, H., Shyy, W.: An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156, 209–240 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hartmann, D., Meinke, M., Schröder, W. (2011). A Cartesian Cut-Cell Solver for Compressible Flows. In: Krause, E., Shokin, Y., Resch, M., Kröner, D., Shokina, N. (eds) Computational Science and High Performance Computing IV. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17770-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17770-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17769-9

  • Online ISBN: 978-3-642-17770-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics