Advertisement

Physical Design Aware Comparison of Flip-Flops for High-Speed Energy-Efficient VLSI Circuits

  • Massimo Alioto
  • Elio Consoli
  • Gaetano Palumbo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6448)

Abstract

In this paper, an extensive comparison of flip-flop (FF) topologies for high-speed applications is carried out in a 65-nm CMOS technology. This work goes beyond previous analyses in that traditional rankings do not include layout parasitics, which strongly affect both speed and energy and lead to drastic changes in the optimum transistor sizing. For this reason, in this work layout parasitics are included in the circuit design loop by adopting a novel strategy. The obtained results show that the energy efficiency and the performance of FFs is mainly determined by the regularity of their topology and layout. Finally, the area-delay tradeoff is also analyzed for the first time.

Keywords

Energy Efficiency Clocking Flip-Flops High Speed Energy-Delay Nanometer CMOS Interconnects Layout Impact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurd, N., et al.: A Family of 32nm IA Processors. In: 2010 IEEE ISSCC (2010)Google Scholar
  2. 2.
    Oklobdzija, V., et al.: Digital System Clocking: High-Performance and Low Power Aspects. Wiley-IEEE Press (2003)Google Scholar
  3. 3.
    Alioto, M., et al.: Flip-Flop Energy/Performance versus Clock Slope and Impact on the Clock Network Design. In: Print on IEEE TCAS-IGoogle Scholar
  4. 4.
    Nedovic, N., et al.: Dual-Edge Triggered Storage Elements and Clocking Strategy for Low-Power Systems. IEEE TVLSI 13(5), 577–590 (2005)Google Scholar
  5. 5.
    Stojanovic, V., et al.: Comparative Analysis of Master-Slave Latches and Flip-Flops for High-Performance and Low-Power Systems. IEEE JSSC 34(4), 536–548 (1999)Google Scholar
  6. 6.
    Giacomotto, C., et al.: The Effect of the System Specification on the Optimal Selection of Clocked Storage Elements. IEEE JSSC 42(6), 1392–1404 (2007)Google Scholar
  7. 7.
    Markovic, D., et al.: Analysis and design of Low-Energy Flip-Flops. In: 2001 ISLPED, pp. 52–55 (2001)Google Scholar
  8. 8.
    Tschanz, J., et al.: Comparative Delay and Energy of Single Edge-Triggered and Dual Edge-Triggered Pulsed Flip-Flops for High-Performance Microprocessors. In: 2001 ISLPED, pp. 147–152 (2001)Google Scholar
  9. 9.
    Heo, S., et al.: Load-Sensitive Flip-Flop Characterization. In: 2001 IEEE CSW-VLSI, pp. 87–92 (2001)Google Scholar
  10. 10.
    Heo, S., et al.: Activity-Sensitive Flip-Flop and Latch Selection for Reduced Energy. IEEE TVLSI 15(9), 1060–1064 (2007)Google Scholar
  11. 11.
    Alioto, M., et al.: General Strategies to Design Nanometer Flip-Flops in the Energy-Delay Space. In: Print on IEEE TCAS-IGoogle Scholar
  12. 12.
    Partovi, H., et al.: Flow-Through Latch and Edge-Triggered Flip-Flop Hybrid Elements. In: 1996 IEEE ISSCC, pp. 138–139 (1996)Google Scholar
  13. 13.
    Klass, F., et al.: A New Family of Semidynamic and Dynamic Flip-Flops with Embedded Logic for High-Performance Processors. IEEE JSSC 34(5), 712–716 (1999)Google Scholar
  14. 14.
    Heald, R., et al.: A Third Generation SPARC V9 64-b Microprocessor. IEEE JSSC 35(11), 1526–1538 (2000)Google Scholar
  15. 15.
    Nedovic, N., et al.: Conditional Techniques for Low Power Consumption Flip-Flops. In: 2001 IEEE ICECS, vol. 2, pp. 803–806 (2001)Google Scholar
  16. 16.
    Zhao, P., et al.: Low Power and High Speed Explicit-Pulsed Flip-Flops. In: 2002 IEEE MSCS, pp. 477–480 (2002)Google Scholar
  17. 17.
    Naffziger, S., et al.: The Implementation of the Itanium 2 Microprocessor. IEEE JSSC 37(11), 1448–1460 (2002)Google Scholar
  18. 18.
    Nikolic, B., et al.: Improved Sense-Amplifier-Based Flip-Flop: Design and Measurements. IEEE JSSC 35(6), 876–884 (2000)MathSciNetGoogle Scholar
  19. 19.
    Nedovic, N., et al.: A Clock Skew Absorbing Flip-Flop. In: 2003 IEEE ISSCC, pp. 342–344 (2003)Google Scholar
  20. 20.
    Kong, B., et al.: Conditional-Capture Flip-Flop for Statistical Power Reduction. IEEE JSSC 36(8), 1263–1271 (2001)Google Scholar
  21. 21.
    Shin, S., et al.: Variable Sampling Window Flip-Flops for Low-Power High-Speed VLSI. In: 2005 IEE CDS, vol. 152(3), pp. 266–271 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Massimo Alioto
    • 1
    • 2
  • Elio Consoli
    • 3
  • Gaetano Palumbo
    • 3
  1. 1.DIEUniversity of SienaSienaItaly
  2. 2.BWRCUC BerkeleyBerkeleyUSA
  3. 3.DIEESUniversity of CataniaCataniaItaly

Personalised recommendations