Residue Arithmetic for Designing Low-Power Multiply-Add Units

  • Ioannis Kouretas
  • Vassilis Paliouras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6448)


In this paper an efficient way to exploit multi-Vdd standard-cell libraries is quantitatively investigated as a means to reduce power consumption of multiply-add units. It is shown that multi-Vdd library-based design is suitable for RNS systems due to their inherent modular organization. In particular the paths defined by the isolated moduli channels are clearly distinguished and the designer can easily and efficiently determine high- and low-voltage areas in the design. Three-, four- and five-moduli RNS bases have been used for the design of the RNS multiply-add units. Comparisons to synthesized circuits that do not use multi-Vdd libraries revealed power reduction up to 38%.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basetas, C., Kouretas, I., Paliouras, V.: Low-Power Digital Filtering Based on the Logarithmic Number System. In: Azémard, N., Svensson, L. (eds.) PATMOS 2007. LNCS, vol. 4644, pp. 546–555. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bayoumi, M.A., Jullien, G.A., Miller, W.C.: A VLSI implementation of residue adders. IEEE Transactions on Circuits and Systems 34, 284–288 (1987)CrossRefGoogle Scholar
  3. 3.
    Bernocchi, G.L., Cardarilli, G.C., Re, A.D., Nannarelli, A., Re, M.: Low-power adaptive filter based on RNS components. In: ISCAS, pp. 3211–3214 (2007)Google Scholar
  4. 4.
    Cardarilli, G., Re, A.D., Nannarelli, A., Re, M.: Impact of RNS coding overhead on FIR filters performance. In: Proc. of 41st Asilomar Conference on Signals, Systems, and Computers (November 2007),
  5. 5.
    Cardarilli, G., Nannarelli, A., Re, M.: Reducing Power Dissipation in FIR Filters using the Residue Number System. In: Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 1, pp. 320–323 (August 2000)Google Scholar
  6. 6.
    Efstathiou, C., Vergos, H.T., Dimitrakopoulos, G., Nikolos, D.: Efficient diminished-1 modulo 2n + 1 multipliers. IEEE Transactions on Computers 54(4), 491–496 (2005)CrossRefGoogle Scholar
  7. 7.
    Efstathiou, C., Vergos, H.T., Nikolos, D.: Modulo 2n±1 adder design using select-prefix blocks. IEEE Transactions on Computers 52(11) (November 2003)Google Scholar
  8. 8.
    Hiasat, A.A.: High-speed and reduced area modular adder structures for RNS. IEEE Transactions on Computers 51(1), 84–89 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
  10. 10.
    Keating, M., Flynn, D., Aitken, R., Gibbons, A., Shi, K.: Low Power Methodology Manual: For System-on-Chip Design. Springer Publishing Company, Incorporated, Heidelberg (2007)Google Scholar
  11. 11.
    Kouretas, I., Paliouras, V.: Mixed radix-2 and high-radix RNS bases for low-power multiplication. In: Svensson, L., Monteiro, J. (eds.) PATMOS 2008. LNCS, vol. 5349, pp. 93–102. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Madhukumar, A.S., Chin, F.: Enhanced architecture for residue number system-based CDMA for high-rate data transmission. IEEE Transactions on Wireless Communications 3(5), 1363–1368 (2004)CrossRefGoogle Scholar
  13. 13.
    Paliouras, V., Skavantzos, A., Stouraitis, T.: Multi-Voltage Low Power Convolvers Using the Polynomial Residue Number System. In: Proceedings of the 12th ACM Great Lakes Symposium on VLSI, GLSVLSI 2002, pp. 7–11. ACM, New York (2002)Google Scholar
  14. 14.
    Ramirez, J., Fernandez, P., Meyer-Base, U., Taylor, F., Garcia, A.: Index-Based RNS DWT architecture for custom IC designs. In: IEEE Workshop, Signal Processing Systems, pp. 70–79 (2001)Google Scholar
  15. 15.
    Ramirez, J., Garcia, A., Lopez-Buedo, S., Lloris, A.: RNS-enabled digital signal processor design. Electronics Letters 38, 266–268 (2002)CrossRefGoogle Scholar
  16. 16.
    Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., Taylor, F.J.: Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, Los Alamitos (1986)zbMATHGoogle Scholar
  17. 17.
    Stouraitis, T., Paliouras, V.: Considering the alternatives in low-power design. IEEE Circuits and Devices 17(4), 23–29 (2001)CrossRefGoogle Scholar
  18. 18.
    Szabó, N., Tanaka, R.: Residue Arithmetic and its Applications to Computer Technology. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  19. 19.
    Wang, Z., Jullien, G.A., Miller, W.C.: An algorithm for multiplication modulo (2n + 1). In: Proceedings of 29th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, pp. 956–960 (1996)Google Scholar
  20. 20.
    Zimmermann, R.: Efficient VLSI implementation of modulo (2n ±1) addition and multiplication. In: Proceedings of the 14th IEEE Symposium on Computer Arithmetic, ARITH 1999, p. 158 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ioannis Kouretas
    • 1
  • Vassilis Paliouras
    • 1
  1. 1.Electrical and Computer Engineering Dept.University of PatrasGreece

Personalised recommendations