Skip to main content

Optimizing and Comparing CMOS Implementations of the C-Element in 65nm Technology: Self-Timed Ring Case

  • Conference paper
Integrated Circuit and System Design. Power and Timing Modeling, Optimization, and Simulation (PATMOS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6448))

Abstract

Self-timed rings are a promising approach for designing high-speed serial links or clock generators. This study focuses on the ring stage components – a C-element and an inverter - and compares the performances of different implementations of this component in terms of speed, power consumption and phase noise. We also proposed a new self-timed ring stage - only composed by a C-element with complementary outputs - which allows us to increase the maximum speed of 25% and reduce the power consumption of 60% at the maximum frequency. All the electrical simulations and results have been performed using a CMOS 65nm technology from STMicroelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebergen, J.C., Fairbanks, S., Sutherland, I.E.: Predicting performance of micro-pipelines using Charlie diagrams. In: ASYNC 1998, San Diego, CA, USA, pp. 238–246. IEEE, Los Alamitos (April 1998)

    Google Scholar 

  2. Fairbanks, S., Moore, S.: Analog micropipeline rings for high precision timing. In: ASYNC 2004, CRETE, Greece, pp. 41–50. IEEE, Los Alamitos (April 2004)

    Google Scholar 

  3. Mullins, R., Moore, S.: Demystifying Data-Driven and Pausible Clocking Schemes. In: ASYNC 2007, Berkeley, California, USA, pp. 175–185. IEEE, Los Alamitos (March 2007)

    Google Scholar 

  4. Hamon, J., Fesquet, L., Miscopein, B., Renaudin, M.: High-Level Time-Accurate Model for the Design of Self-Timed Ring Oscillators. In: ASYNC 2008, Newcastle, UK, pp. 29–38. IEEE, Los Alamitos (April 2008)

    Google Scholar 

  5. Yahya, E., Elissati, O., Zakaria, H., Fesquet, L., Renaudin, M.: Programma-ble/Stoppable Oscillator Based on Self-Timed Rings. In: 15th IEEE Symposium on ASYNC 2009, Chapel Hill, USA, May 17-20, pp. 3–12 (2009)

    Google Scholar 

  6. Winstanley, A., Greenstreet, M.R.: Temporal properties of self timed rings. In: CHARM 2001, London, UK, pp. 140–154. Springer, Heidelberg (April 2001)

    Google Scholar 

  7. Martin, A.J.: Formal progress transformations for VLSI circuit synthesis. In: Dijkstra, E.W. (ed.) Formal Development of Programs and Proofs, pp. 59–80. Addison-Wesley, Reading (1989)

    Google Scholar 

  8. Sutherland, I.E.: Micropipelines. ACM Commun. 32, 720–738 (1989)

    Article  Google Scholar 

  9. Berkel, K.v., Burgess, R., Kessels, J., Peeters, A., Roncken, M., Schalij, F.: A fully-asynchronous low-power error corrector for the DCC player. IEEE J. Solid-State Circuits 29, 1429–1439 (1994)

    Article  Google Scholar 

  10. Sutherland, I., Sproull, B., Harris, D.: Logical Effort: Designing Fast CMOS Circuits. Morgan Kaufmann, San Fransisco (1999)

    Google Scholar 

  11. Shams, M., Ebergen, J.C., Elmasry, M.I.: Optimizing CMOS implementations of C-element. In: Proc. Int. Conf. Comput. Design (ICCD), pp. 700–705 (October 1997)

    Google Scholar 

  12. Razavi, B.: A Study of Phase Noise in CMOS Oscillators. IEE Journal of Solid-State Circuits 31(3) (March 1996)

    Google Scholar 

  13. Leeson, D.B.: A simple model of feedback oscillator noise spectrum. Proc. IEEE 54, 329–330 (1966)

    Article  Google Scholar 

  14. Bunch, R.L.: A Fully Monolithic 2.5GHz LC Voltage Controlled Oscillator in 0.35mm CMOS Technology. Master of Science in Electrical Engineering, Virginia Polytechnic Institute and State University, pp. 1–7 & 53–72 (April 2001)

    Google Scholar 

  15. Hajimiri, A., Limotyrakis, S., Lee, T.H.: Jitter and phase noise in ring oscillators. IEEE Journal of Solid-State Circuits 34(6), 790–804 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elissati, O., Yahya, E., Rieubon, S., Fesquet, L. (2011). Optimizing and Comparing CMOS Implementations of the C-Element in 65nm Technology: Self-Timed Ring Case. In: van Leuken, R., Sicard, G. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization, and Simulation. PATMOS 2010. Lecture Notes in Computer Science, vol 6448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17752-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17752-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17751-4

  • Online ISBN: 978-3-642-17752-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics