Statistical Leakage Power Optimization of Asynchronous Circuits Considering Process Variations

  • Mohsen Raji
  • Alireza Tajary
  • Behnam Ghavami
  • Hossein Pedram
  • Hamid R. Zarandi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6448)


Increasing levels of process variability in deep sub micron era has become a critical concern for performance and power constraint designs. This paper introduces a framework for the statistical leakage power minimization of template-based asynchronous circuits considering process variation. We propose a statistical Dual-Vt assignment of asynchronous circuits that considers both the variability in performance and leakage power consumption of a circuit. The utilized circuit model is an extended Timed Petri-Net named Variant-Timed Petri-Net which captures the dynamic behavior of the circuit with statistical delay and leakage power values. We applied a genetic algorithm that uses a 2-dimensional graph to calculate the fitness to each threshold voltage assignment. Experimental results show that using this statistically aware optimization, leakage power can be reduced by 40.5% and 54.4% for the mean and the variance values.


Monte Carlo Threshold Voltage Power Optimization Flow Leakage Power Asynchronous Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tang, C.K., Lin, C.Y., Lu, Y.C.: An Asynchronous Circuit Design with Fast Forwarding Technique at Advanced Technology Node. In: Proceedings of ISQED 2008. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  2. 2.
    Beerel, P.A.: Asynchronous Circuits: An Increasingly Practical Design Solution. In: Proceedings of ISQED 2002. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  3. 3.
    Martin, A.J., et al.: The Lutonium: A Sub-Nanojoule Asynchronous 8051 Microcontroller. In: Proceedings of ASYNC 2003 (2003)Google Scholar
  4. 4.
    Yun, K.Y., Beerel, P.A., Vakilotojar, V., Dooply, A.E., Arceo, J.: A low-control-overhead asynchronous differential equation solver. In: Proceedings of ASYNC 1997 (1997)Google Scholar
  5. 5.
    Garnica, O., Lanchares, J., Hermida, R.: Fine-grain asynchronous circuits for low-power high performance DSP implementations. In: Proceedings of SiPS (2000)Google Scholar
  6. 6.
    Narendra, S.G., Chandrakasan, A. (eds.): Leakage in Nanometer CMOS Technologies. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Ghavami, B., Pedram, H.: Design of dual threshold voltages asynchronous circuits. In: Proceedings of ISLPED 2008 (2008)Google Scholar
  8. 8.
    Raji, M., Ghavami, B., Pedram, H.: Statistical Static Performance Analysis of Asynchronous Circuits Considering Process Variation. In: Proceedings ISQED 2009, pp. 291–296 (2009)Google Scholar
  9. 9.
    Raji, M., Ghavami, B., Pedram, H., Zarandi, H.R.: Process Variation Aware Performance Analysis of Asynchronous Circuits Considering Spatial Correlation. In: Monteiro, J., van Leuken, R. (eds.) PATMOS 2009. LNCS, vol. 5953, pp. 5–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Orshansky, M., Nassif, S.R., Boning, D.: Design for Manufacturability and Statistical Design, A Constructive Approach, pp. 11–15. Springer, HeidelbergGoogle Scholar
  11. 11.
    Borkar, S., et al.: Parameter variation and Impact on Circuits and Microarchitecture. In: Proceedings of DAC 2003, pp. 338–342 (2003)Google Scholar
  12. 12.
    Rao, R., et al.: Parametric yield estimation considering leakage variability. In: Proceedings of DAC 2004, pp. 442–447 (June 2004)Google Scholar
  13. 13.
    Orshansky, M., Nassif, S.R., Boning, D.: Design for Manufacturability and Statistical Design, A Constructive Approach, pp. 11–15. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Wei, L., Chen, Z., Roy, K., Johnson, M.C., Ye, Y., De, V.K.: Design optimization of dual-threshold circuits for lowvoltage low-power applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7(1), 16–24 (1999)CrossRefGoogle Scholar
  15. 15.
    Wong, C.G., Martin, A.J.: High-Level Synthesis of Asynchronous Systems by Data Driven Decomposition. In: Proceedings of DAC (2003)Google Scholar
  16. 16.
    Dinh Duc, A.V., Rigaud, J.B., Rezzag, A., Sirianni, A., Fragoso, J., Fesquet, L., Renaudin, M.: TASTCAD Tools: Tutorial. In: Proceedings of ASYNC (2002)Google Scholar
  17. 17.
    Prakash, P., Martin, A.J.: Slack Matching Quasi Delay-Insensitive Circuits. In: Proceedings of ASYNC, pp. 195–204 (2006)Google Scholar
  18. 18.
    Wong, C.G., Martin, A.J.: High-Level Synthesis of Asynchronous Systems by Data Driven Decomposition. In: Proceedings of 40th DAC, Anneheim, CA, USA (2003)Google Scholar
  19. 19.
    Beerel, P.A., Kim, N.-H., Lines, A., Davies, M.: Slack Matching Asynchronous Designs. In: Proceedings of ASYNC, Washington, DC, USA (2006)Google Scholar
  20. 20.
    Peterson, J.L.: Petrinet Theory and the Modeling of Systems. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  21. 21.
    Li, X., Le, J., Pileggi, L.T.: Statistical Performance Modeling and Optimization. In: Foundation and Trends in Electronic Design Automation, vol. 1(4), pp. 331–480 (2003)Google Scholar
  22. 22.
    Kuo, J.T., Cheng, W.C., Chen, L.: Multiobjective water resources systems analysis using genetic algorithms - application to Chou-Shui River Basin, Taiwan. Water Science and Technology 48(10), 71–77 (2003)Google Scholar
  23. 23.
    Raji, M., et al.: Process variation-aware performance analysis of asynchronous circuits. Microelectron. J. (2010) doi:10.1016/j.mejo.2009.12.013Google Scholar
  24. 24.
    Lane, B.: SystemC Language Reference Manual, Copyright © Open SystemC Initiative, San Jose, CA (2003)Google Scholar
  25. 25.
    Karp, R.M.: A characterization of the minimum cycle mean in a diagraph. Discrete Mathematics Journal 23, 309–311 (1978)CrossRefzbMATHGoogle Scholar
  26. 26.
    Sheu, B.J., Scharfetter, D.L., Ko, P.K., Teng, M.C.: BSIM: Berkeley Short-Channel IGFET Model for MOS Transistors. IEEE Journal of Solid-State Circuits SC-22(4), 558–566 (1987)CrossRefGoogle Scholar
  27. 27.
    Chang, H., Sapatnekar, S.: Statistical timing analysis under spatial correlations. IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems 24(9), 1467–1482 (2005)CrossRefGoogle Scholar
  28. 28.
    Agarwal, A., Blaauw, D., Zolotov, V.: Statistical timing analysis forintra - die process variations with spatial correlations. In: Proceedings of ICCAD, pp. 900–907 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohsen Raji
    • 1
  • Alireza Tajary
    • 1
  • Behnam Ghavami
    • 1
  • Hossein Pedram
    • 1
  • Hamid R. Zarandi
    • 1
  1. 1.Department of Computer Engineering and Information TechnologyAmirkabir University of Technology (Tehran Polytechnic)TehranI.R. of Iran

Personalised recommendations