Portable digital systems tend to be not just low power but power efficient as they are powered by low batteries or energy harvesters. Energy harvesting systems tend to provide nondeterministic, rather than stable, power over time. Existing memory systems use delay elements to cope with the problems under different Vdds. However, this introduces huge penalties on performance, as the delay elements need to follow the worst case timing assumption under the worst environment. In this paper, the latency mismatch between memory cells and the corresponding controller using typical delay elements is investigated and found to be highly variable for different Vdd values. A Speed Independent (SI) SRAM memory is then developed which can help avoid such mismatch problems. It can also be used to replace typical delay lines for use in bundled-data memory banks. A 1Kb SI memory bank is implemented based on this method and analysed in terms of the latency and power consumption.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Technology Roadmap for Semiconductors,
  2. 2.
    Martin, A.J.: The limitations to delay-insensitivity in asynchronous circuits. In: Dally, W.J. (ed.) Advanced Research in VLSI, pp. 263–278. MIT press, Cambridge (1990)Google Scholar
  3. 3.
    Sylvester, D., Agarwal, K., Shah, S.: Variability in nanometer CMOS: Impact, analysis, and minimization. Integration the VLSI journal (41), 319–339 (2008)Google Scholar
  4. 4.
    Saito, H., Kondratyev, A., Cortadella, J., Lavagno, L., Yakovlev, A.: What is the cost of delay insensitivity? In: Proc. ICCAD 1999, San Jose, CA, pp. 316–323 (November 1999)Google Scholar
  5. 5.
    Nielsen, L.S., Staunstrup, J.: Design and verification of a self-timed RAM. In: Proc. of the IFIP International Conference on VLSI 1995 (1995)Google Scholar
  6. 6.
    Sit, V.W.-Y., et al.: A four phase handshaking asynchronous static RAM design for self-timed systems. IEEE Journal of solid-state circuits 34(1), 90–96 (1999)CrossRefGoogle Scholar
  7. 7.
    Soon-Hwei, T., et al.: A 160Mhz 45mw asynchronous dual-port 1Mb CMOS SRAM. In: Proc. of IEEE Conference on Electron Devices and Solid-State Circuits (2005)Google Scholar
  8. 8.
    Dama, J., Lines, A.: GHz asynchronous SRAM in 65nm. In: Proc. of 15th IEEE Symposium on Asynchronous Circuits and Systems (2009)Google Scholar
  9. 9.
    Chang, M.F., Yang, S.M., Chen, K.T.: Wide Vdd embedded asynchronous SRAM with dual-mode self-timed technique for dynamic voltage systems. IEEE Trans. on Circuits and Systems I 56(8), 1657–1667 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, A., Chandrakasan, A.: A 180mv subthreshold FFT processor using a minimum energy design methodology. IEEE Journal of Solid-State Circuits 40(1), 310–319 (2005)CrossRefGoogle Scholar
  11. 11.
    Sekiyama, A., et al.: A 1-V operating 256 Kb full CMOS SRAM. IEEE Journal of Solid-State Circuits 27(5), 776–782 (1992)CrossRefGoogle Scholar
  12. 12.
    Amrutur, B.S., Horowitz, A.: A Replica technique for wordline and sense control in low power SRAM’s. IEEE Journal of Solid-State Circuits 33(8), 1208–1219 (1998)CrossRefGoogle Scholar
  13. 13.
    Mokhov, A., et al.: Power elastic systems: Discrete event control, concurrency reduction and hardware implementation, Tech. Report NCL-EECE-MSD-TR-2009-151, School of EECE, New-castle UniversityGoogle Scholar
  14. 14.
    Varshavsky, V., et al.: CMOS-based SRAM Cell”, USSR Patent Application 4049181/24/52011 (favourable decision made 10.10.86)Google Scholar
  15. 15.
    Zhai, B., et al.: A Sub-200mV 6T SRAM in 0.13um CMOS. In: Proc. of ISSCC (2007)Google Scholar
  16. 16.
    Sparsø, J., Furber, S.: Principles of asynchronous circuit design: a system perspective. Kluwer Academic Publishers, Boston (2001)CrossRefGoogle Scholar
  17. 17.
    Reddi, V., Gupta, M., Holloway, G., et al.: Voltage emergency prediction: a signature-based approach to reducing voltage emergencies. In: Proc. of International Symposium on High-Performance Computer Architecture, HPCA-15 (2009)Google Scholar
  18. 18.
    Amelifard, B., Fallah, F.D., Pedram, M.: Leakage minimization of SRAM cells in a dual-Vt and dual Tox technology. IEEE Trans. on VLSI 16(7), 851–860 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Abdullah Baz
    • 1
  • Delong Shang
    • 1
  • Fei Xia
    • 1
  • Alex Yakovlev
    • 1
  1. 1.Microelectronic System Design Group, School of EECENewcastle UniversityNewcastle upon TyneEngland, UK

Personalised recommendations