Advertisement

On Line Power Optimization of Data Flow Multi-core Architecture Based on Vdd-Hopping for Local DVFS

  • Pascal Vivet
  • Edith Beigne
  • Hugo Lebreton
  • Nacer-Eddine Zergainoh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6448)

Abstract

With growing integration, power consumption is becoming a major issue for multi-core chips. At system level, per-core DVFS is expected to save substantial energy provided an adapted control. In this paper we propose a local on-line optimization technique to reduce energy in data-flow architecture, thanks to a Local Power Manager (LPM) using Vdd-Hopping for efficient local DVFS. The proposed control is a hybrid global and local scheme which respects throughput and latency constraints. The approach has been fully validated on a real MIMO Telecom application using a SystemC platform instrumented with power estimates. Local DVFS brings 45% power reduction compared to idle mode. When local on-line optimization benefit from computation time variations, 30% extra energy savings can be achieved.

Keywords

Low Power DVFS VDD-Hopping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhunia, S., Datta, A., Banerjee, N., Roy, K.: GAARP: A Power-Aware GALS Architecture for Real-Time Algorithm-Specific Tasks. IEEE Transactions on Computer, Special Issue on low-Power Design (99), 752–766 (June 2005)Google Scholar
  2. 2.
    Sylvain, M., Vivet, P., Renaudin, M.: A Power Supply Selector for Energy- and Area-Efficient Local Dynamic Voltage Scaling. In: Azémard, N., Svensson, L. (eds.) PATMOS 2007. LNCS, vol. 4644, pp. 556–565. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Truonga, D., et al.: A 167-processor 65 nm Computational Platform with Per-Processor Dynamic Supply Voltage and Dynamic Clock Frequency Scaling. In: Proc. Symposium on VLSI Circuits (June 2008)Google Scholar
  4. 4.
    Mishra, R., Rastogi, N., Zhu, D., Mosse, D., Melhem, R.: Energy aware scheduling for distributed real-time systems. In: Proc. of Parallel and Distributed Processing Symposium (April 2003)Google Scholar
  5. 5.
    Watanabe, R., Kondo, M., Imai, M., Nakamura, H., Nanya, T.: Task Scheduling under Performance Constraints for Reducing the Energy Consumption of the GALS Multi-Processor SoC Design. In: DATE 2007 (2007)Google Scholar
  6. 6.
    Xian, C., Lu, Y., Li, Z.: Energy-Aware Scheduling for Real-Time Multiprocessor Systems with Uncertain Task Execution Time. In: DAC 2007, pp. 664–669 (2007)Google Scholar
  7. 7.
    Grosse, P., Durand, Y., Feautrier, P.: Methods for Power Optimization in SoC-based Data Flow Systems. ACM Transactions On Design Automation of Electronic Systems (TODAES 2009) 14(3), Article No. 38 (2009)Google Scholar
  8. 8.
    Niyogi, K., Marculescu, D.: Speed and voltage selection for GALS systems based on voltage/frequency islands. In: Proceedings of, ASP-DAC 2005 (2005)Google Scholar
  9. 9.
    Puschini, D., Clermidy, F., Benoit, P., Sassatelli, G., Torres, L.: Temperature-Aware Distributed Run-Time Optimization on MP-SoC Using Game Theory. In: Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2008, pp. 375–380 (2008)Google Scholar
  10. 10.
    Alimonda, A., Acquaviva, A., Carta, S., Pisano, A.: A Control Theoretic Approach to Run-Time Energy Optimization of Pipelined Processing in MPSoCs Design. In: Proceedings of Design Automation and Test in Europe, DATE 2006 (2006)Google Scholar
  11. 11.
    Maxiaguine, A., Chakraborty, S., Thiele, L.: DVS for buffer-constrained architectures with predictable QoS-energy tradeoffs. In: 3rd International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2005, pp. 111–116 (2005)Google Scholar
  12. 12.
    Beigné, E., Clermidy, F., Miermont, S., Vivet, P.: Dynamic Voltage and Frequency Scaling Architecture for Units Integration within a GALS NoC. In: Proceedings of NOCS 2008 (2008)Google Scholar
  13. 13.
    Beigné, E., et al.: An Asynchronous Power Aware and Adaptive NoC based Circuit. IEEE Journal Of Solid State Circuits 44, 1167–1177 (2009)CrossRefGoogle Scholar
  14. 14.
    Clermidy, F., et al.: A 477mW NoC-Based Digital Baseband for MIMO 4G SDR. In: Proceedings of IEEE International Solid-State Circuits Conference, ISSCC 2010 (2010)Google Scholar
  15. 15.
    Lebreton, H., Vivet, P.: Power Modeling in SystemC at Transaction Level, Application to a DVFS Architecture. In: Proc. of Int. Symposium on VLSI, ISVLSI 2008, pp. 463–466 (2008)Google Scholar
  16. 16.
    Soongsoo, L., Sakurai, T.: Run-time Voltage Hopping for Low-Power Real-time Systems. In: Proc. of 37th Design Automation Conference, DAC 2000, pp. 806–809 (June 2000)Google Scholar
  17. 17.
    Yan, Z., Zhijian, L., Lach, J., Skadron, K., Stan, M.R.: Optimal procrastinating voltage scheduling for hard real-time systems. In: DAC 2005, pp. 905–909 (June 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pascal Vivet
    • 1
  • Edith Beigne
    • 1
  • Hugo Lebreton
    • 1
  • Nacer-Eddine Zergainoh
    • 2
  1. 1.CEA-Leti, MinatecGrenobleFrance
  2. 2.TIMAGrenobleFrance

Personalised recommendations