Advertisement

Using Habermas’ Theory of Rationality to Gain Insight into Students’ Understanding of Algebraic Language

  • Francesca MorselliEmail author
  • Paolo Boero
Part of the Advances in Mathematics Education book series (AME)

Abstract

In this chapter we consider students’ use of algebraic language in mathematical modeling and proving. We will show how a specific model derived from Habermas’ construct of rational behavior allows us to describe and interpret several kinds of students’ difficulties and mistakes in a comprehensive way, provides the teacher with useful indications for the students’ approach to algebraic language and suggests further research developments.

Keywords

Mathematics Education Rational Behavior Algebraic Expression Educational Study Communicative Rationality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anichini, G., Arzarello, F., Ciarrapico, L., & Robutti, O. (2003). Matematica 2001. La matematica per il cittadino. Attività didattiche e prove di verifica per un nuovo curricolo di Matematica. Lucca: Mattoni Stampatore. http://umi.dm.unibo.it/italiano/Matematica2001/matematica2001.html.
  2. Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24–35. Google Scholar
  3. Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the Learning of Mathematics, 25(2), 42–48. Google Scholar
  4. Arzarello, F., & Bartolini Bussi, M. G. (1998). Italian trends of research in mathematics education: A national case study in the international perspective. In J. Kilpatrick & A. Sierpinska (Eds.), Mathematics Education as a Research Domain: A Search for Identity (pp. 243–262). Dordrecht: Kluwer. Google Scholar
  5. Arzarello, F., Bazzini, L., & Chiappini, G. (1994). Intensional semantics as a tool to analyse algebraic thinking. Rendiconti del Seminario Matematico dell’Università di Torino, 52(1), 105–125. Google Scholar
  6. Arzarello, F., Bazzini, L., & Chiappini, G. (1995). The construction of algebraic knowledge: Towards a socio-cultural theory and practice. In Proceedings of PME19, The 19th Conference of the International Group for the Psychology of Mathematics Education. Recife, Brazil (Vol. 1, pp. 119–134). Google Scholar
  7. Balacheff, N. (1982). Preuve et démonstration en mathématiques au collège. Recherches en didactique des mathématiques, 3(3), 261–304. Google Scholar
  8. Bartolini Bussi, M. G. (1996). Mathematical discussion and perspective drawing in elementary school. Educational Studies in Mathematics, 31(1–2), 11–41. CrossRefGoogle Scholar
  9. Bednarz, N., & Janvier, B. (1996). Emergence and development of algebra as a problem solving tool: Continuities and discontinuities with arithmetic. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching (pp. 115–136). Dordrecht: Kluwer. Google Scholar
  10. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modeling, applications, and links to other subjects: State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37–68. CrossRefGoogle Scholar
  11. Boero, P. (2001). Transformation and anticipation as key processes in algebraic problem solving. In R. Sutherland et al. (Eds.), Perspectives on School Algebra (pp. 99–119). Dordrecht (NL): Kluwer. Google Scholar
  12. Boero, P. (2006). Habermas’ theory of rationality as a comprehensive frame for conjecturing and proving in school. In Proceedings of PME 30, The 30th Conference of the International Group for the Psychology of Mathematics Education. Praha, Czech Republic (Vol. 2, pp. 185–192). Google Scholar
  13. Boero, P., Douek, N., & Ferrari, P. L. (2008). Developing mastery of natural language. In L. English (Ed.), International Handbook of Research in Mathematics Education (pp. 262–295). New York: Routledge. Google Scholar
  14. Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 179–209). Belo Horizonte, Brazil: PME. Google Scholar
  15. Carr, W., & Kemmis, S. (2005). Staying critical. Educational Action Research, 13(3), 347–357. CrossRefGoogle Scholar
  16. Chevallard, Y. (1984). Le passage de l’arithmétique à l’algébrique dans l’enseignement des mathématiques au collège: l’évolution de la transposition didactique. Petit X, 5, 51–94. Google Scholar
  17. Dapueto, C., & Parenti, L. (1999). Contributions and obstacles of contexts in the development of mathematical knowledge. Educational Studies in Mathematics, 39, 1–21. CrossRefGoogle Scholar
  18. Douek, N. (1999). Argumentative aspects of proving of some undergraduate mathematics students’ performances. In Proceedings of PME 23, The 23rd Conference of the International Group for the Psychology of Mathematics Education. Haifa, Israel (Vol. 2, pp. 273–280). Google Scholar
  19. Dreyfus, T. (1999). Why Johnny can’t prove. Educational Studies in Mathematics, 38, 85–109. CrossRefGoogle Scholar
  20. Duval, R. (1991). Structure du raisonnement déductif et apprentissage de la demonstration. Educational Studies in Mathematics, 22, 233–261. CrossRefGoogle Scholar
  21. Duval, R. (1995). Sémiosis et pensée humain. Berne: Peter Lang. Google Scholar
  22. Duval, R. (2007). Cognitive functioning and the understanding of mathematical processes of proof. In P. Boero (Ed.), Theorems in School: From History, Epistemology and Cognition to Classroom Practices (pp. 137–161). Rotterdam, The Netherlands: Sense Publishers. Google Scholar
  23. Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(2), 19–25. Google Scholar
  24. Furinghetti, F., & Morselli, F. (2009). Every unsuccessful solver is unsuccessful in his/her own way: Affective and cognitive factors in proving. Educational Studies in Mathematics, 70, 71–90. CrossRefGoogle Scholar
  25. Habermas, J. (2003). Truth and Justification. Cambridge (MA): MIT Press. Google Scholar
  26. Hanna, G., & De Villiers, M. (2008). Proof and proving in mathematics education. Discussion document. ZDM—The International Journal on Mathematics Education, 40, 329–336. CrossRefGoogle Scholar
  27. Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in Collegiate Mathematics Education (Vol. III, pp. 234–283). Providence, RI: American Mathematical Society. Google Scholar
  28. Hoch, M., & Dreyfus, T. (2006). Structure sense versus manipulation skills: An unexpected result. In Proceedings of PME 30, the 30th Conference of the International Group for the Psychology of Mathematics Education. Prague, Czech Republic (Vol. 3, pp. 305–312). Google Scholar
  29. Kemmis, S. (2005). Knowing practices: Searching for saliencies. Pedagogy, Culture and Society, 13(3), 391–426. CrossRefGoogle Scholar
  30. Kemmis, S. (2006). Participatory action research and the public sphere. Educational Action Research, 14(4), 459–476. CrossRefGoogle Scholar
  31. Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40(2), 173–196. CrossRefGoogle Scholar
  32. MacGregor, M., & Price, E. (1999). An exploration of aspects of language proficiency and algebra learning. Journal for Research in Mathematics Education, 30, 449–467. CrossRefGoogle Scholar
  33. Malara, N., & Navarra, G. (2003). ArAl Project. Arithmetic Pathways Towards Favouring Pre-algebraic Thinking. Bologna: Pitagora. Google Scholar
  34. Morselli, F. (2007). Sui fattori culturali nei processi di congettura e dimostrazione. PhD Thesis, Università degli Studi di Torino. Google Scholar
  35. Morselli, F., & Boero, P. (2009). Habermas’ construct of rational behavior as a comprehensive frame for research on the teaching and learning of proof. In Lin, Hsieh, Hanna, & De Villiers (Eds.), Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Education (Vol. 2, pp. 100–105). Taipei, Taiwan: The Department of Mathematics, National Taiwan Normal University. Google Scholar
  36. Norman, D. A. (1993). Things that Make us Smart. London: Addison-Wesley. Google Scholar
  37. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23–41. CrossRefGoogle Scholar
  38. Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM—The International Journal in Mathematics Education, 40, 385–400. CrossRefGoogle Scholar
  39. Pierce, R., & Stacey, K. (2001). A framework for algebraic insight. In J. Bobis, B. Perry, & M. Mitchelmore (Eds.), Numeracy and Beyond. Proceedings of the 24th Annual Conference of the Mathematics Education Research Group of Australasia (MERGA). Sydney, Australia (Vol. 2, pp. 418–425). Google Scholar
  40. Radford, L., & Puig, L. (2007). Syntax and meaning as sensuous, visual, historical forms of algebraic thinking. Educational Studies in Mathematics, 66, 145–164. CrossRefGoogle Scholar
  41. Sorde Marti, T. (2004). Editor’s review of Jurgen Habermas’ Truth and Justification. http://www.hepg.org/her/abstract/63.
  42. Stacey, K., & MacGregor, M. (1999). Taking the algebraic thinking out of algebra. Mathematics Education Research Journal, 11(1), 25–38. Google Scholar
  43. Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38, 289–321. Google Scholar
  44. Weber, K., & Alcock, L. (2004). Semantic and syntactic proof production. Educational Studies in Mathematics, 56, 209–234. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of GenovaGenovaItaly

Personalised recommendations