Advertisement

Abstract

In this work we focus on the issue of providing individual help to students in terms of hints. Once a student is suggested to solve a problem via an intelligence tutoring system an immediate question arises on how to provide automated assistance if the student experiences some difficulties in solving that problem. While hints turn out to be quite useful in that matter, the discussion on how to deliver them is still open.

Keywords

Learning assessment intelligent systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K.J.: Social Choice and Individual Values, 2nd edn. Wiley, New York (1951)zbMATHGoogle Scholar
  2. 2.
    Berg, S.: Condorcet’s Jury Theorem and the Reliability of Majority Voting. Group Decision and Negotiation 5(3), 229–238 (1996)CrossRefGoogle Scholar
  3. 3.
    Bogart, K.P.: Some social sciences applications of ordered sets. In: Rival, I. (ed.) Ordered Sets, Reidel, Dordrecht, pp. 759–787 (1982)Google Scholar
  4. 4.
    Breuker, J.: Components of Problem Solving and Types of Problems. In: Dong, Z., Van de Velde, W., Schreiber, G. (eds.) EKAW 1994. LNCS, vol. 867, pp. 118–136. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Brunstein, A., Krems, J.: Helps and Hints for Learning with Web Based Learning Systems: The Role of Instructions. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 794–796. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Encheva, S., Tumin, S.: Automated Discovering of What is Hindering the Learning Performance of a Student. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 521–531. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Keefe, J.W.: Learning style: An overview. In: NASSP’s Student learning styles: Diagnosing and proscribing programs, pp. 1–17 (1979), Reston, VA. National Association of Secondary School PrinciplesGoogle Scholar
  11. 11.
    Marek, V.W., Truszczynski, M.: Contributions to the theory of rough sets. Fundamenta Informaticae 39(4), 389–409 (1999)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Martinez, M.: Building interactive Web learning environments to match and support individual learning differences. Journal of Interactive Learning Research 11(2) (2001)Google Scholar
  13. 13.
    Mayo, M., Mitrovic, A.: Optimising ITS behaviour with Bayesian networks and decision theory. International Journal of Artificial Intelligence in Education 12, 124–153 (2001)Google Scholar
  14. 14.
    Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing, Dordrecht (1991)CrossRefzbMATHGoogle Scholar
  16. 16.
    Pecheanu, E., Segal, C., Stefanescu, D.: CDVE 2004. LNCS (LNAI), vol. 3190, pp. 1229–1234. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Schworm, S., Renkl, A.: Learning by solved example problems: Instructional explanations reduce self-explanation activity. In: Gray, W.D., Schunn, C.D. (eds.) Proceeding of the 24th Annual Conference of the Cognitive Science Society, pp. 816–821. Erlbaum, Mahwah (2002)Google Scholar
  18. 18.
    Stewart, K.L., Felicetti, L.A.: Learning styles of marketing majors. Educational Research Quarterly 15(2), 15–23 (1992)Google Scholar
  19. 19.
    Tsovaltzi, D., Fiedler, A., Horacek, H.: A Multi-dimensional Taxonomy for Automating Hinting. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 772–781. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Yao, Y.Y.: Interval-set algebra for qualitative knowledge representation. In: Proceedings of the Fifth International Conference on Computing and information, pp. 370–374 (1993)Google Scholar
  21. 21.
    Van Deemen, A.: The Probability of the Paradox of Voting for Weak Preference Orderings. Social Choice and Welfare 16(2) (1999)Google Scholar
  22. 22.
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sylvia Encheva
    • 1
  1. 1.Faculty of Technology, Business, and Maritime SciencesStord/Haugesund University CollegeHaugesundNorway

Personalised recommendations