Skip to main content

Complexity and Diversity of Digraphs

  • Conference paper

Abstract

There has been a great deal of ferment in ‘Complexity Science’ in recent years, as chronicled in the proceedings of the New England Complex Systems Institute’s International Conference on Complex Systems [Minai & Bar-Yam 2006, 2008] and those of the Santa Fe Institute [Nadel & Stein 1995, Cowan 1994]. We have been primarily focused on developing metrics of complexity relevant to chemistry, especially synthetic chemistry [Bertz 2003a–c]. Our approach involves abstracting a molecule or a plan for its synthesis as a graph and then using the tools of graph theory to characterize its complexity and diversity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bertz, S.H., 2003a, New J. Chem., 27, 860–869.

    Article  Google Scholar 

  2. Bertz, S.H., 2003b, New J. Chem., 27, 870–879.

    Article  Google Scholar 

  3. Bertz, S.H., 2003c, Complexity in Chemistry: Introduction and Fundamentals, edited by D. Bonchev & D.H. Rouvray, Taylor & Francis (London), 91–156.

    Google Scholar 

  4. Bertz, S.H., 2001, Chem. Commun., 2516–2517.

    Google Scholar 

  5. Bertz, S.H., 1986, J. C. S. Chem. Commun., 1627–1628.

    Google Scholar 

  6. Bertz, S.H., 1983, Chemical Applications of Topology and Graph Theory, edited by R.B. King, Elsevier (Amsterdam), 206–221.

    Google Scholar 

  7. Bertz, S.H., 1982, J. Am. Chem. Soc, 104, 5801–5803.

    Article  Google Scholar 

  8. Bertz, S.H., 1981a, J. Am. Chem. Soc, 103, 3599–3601.

    Article  Google Scholar 

  9. Bertz, S.H., 1981b, J. C. S. Chem. Commun., 818–820.

    Google Scholar 

  10. Bertz, S.H., & Herndon, W.C., 1986, Artificial Intelligence Applications in Chemistry, edited by T.H. Pierce & B.A. Hohne, American Chemical Society (Washington, DC), 169–175.

    Chapter  Google Scholar 

  11. Bertz, S.H., & Sommer, T.J., 1997, Chem. Commun., 2409–2410.

    Google Scholar 

  12. Bertz, S.H., & Sommer, T.J., 1993, Organic Synthesis: Theory and Applications, Vol. 2, edited by T. Hudlicky, JAI Press (Greenwich, CT), 67–92.

    Google Scholar 

  13. Bertz, S.H., & Wright, W.F., 1998, Graph Theory Notes of New York (NY Acad. Sci.), XXXV, 32–48.

    MathSciNet  Google Scholar 

  14. Bertz, S.H., & Zamfirescu, CM., 2000, MATCH-Commun. Math. Comput. Chem., 42, 39–70.

    MathSciNet  MATH  Google Scholar 

  15. Bonchev, D., & Trinajstic, N., 1977, J. Chem. Phys., 67, 4517–4533.

    Article  ADS  Google Scholar 

  16. Cowan, G.A., Pines, D., & Meltzer, D.(ed.), 1994, Complexity: Metaphors, Models, and Reality, Westview Press (Boulder, CO).

    Google Scholar 

  17. Gibbons, A., 1991, Algorithmic Graph Theory, Cambridge University Press (Cambridge, UK).

    Google Scholar 

  18. Gordon, M., & Kennedy, J.W., 1973, J. C. S. Faraday Trans. II, 69, 484–504.

    Article  Google Scholar 

  19. Gutman, I., Mallion, R.B., & Essam, J.W., 1983, Mol. Phys., 50, 859–877.

    Article  MathSciNet  ADS  Google Scholar 

  20. Harary, F., 1969, Graph Theory, Addison-Wesley (Reading, MA).

    Google Scholar 

  21. Hendrickson, J.B., 1977, J. Am. Chem. Soc, 99, 5439–5450.

    Article  Google Scholar 

  22. Minai, A., & Bar-Yam, Y. (ed.), 2006, Unifying Themes in Complex Systems, Vol. 3A & B, Springer (Berlin).

    Google Scholar 

  23. Minai, A., & Bar-Yam, Y.(ed.), 2008, Unifying Themes in Complex Systems, Vol. 4, Springer (Berlin).

    Google Scholar 

  24. Nadel, L., & Stein, D.L.(ed.), 1995, Lectures in Complex Systems (1993), Addison-Wesley (Redwood City, CA).

    Google Scholar 

  25. Nikolić, S., Trinajstić, N., Tolić, I.M., Rücker, G., & Rücker, C, 2003, Complexity in Chemistry: Introduction and Fundamentals, edited by D. Bonchev & D.H. Rouvray, Taylor & Francis (London), 29–89.

    Google Scholar 

  26. Pauling, L., 1960, The Nature of the Chemical Bond, 3rd edn., Cornell University Press (Ithaca, NY).

    Google Scholar 

  27. Rücker, G., & Rücker, C, 2001, J. Chem. Inf. Comput. Sci., 41, 1457–1462.

    Google Scholar 

  28. Shannon, CA., & Weaver, W., 1949, The Mathematical Theory of Communication, University of Illinois Press (Urbana, IL).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertz, S.H., Pereira, G.Z., Zamfirescu, C.M.D. (2011). Complexity and Diversity of Digraphs. In: Minai, A.A., Braha, D., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17635-7_4

Download citation

Publish with us

Policies and ethics