Skip to main content

Defining Emergent Descriptions by Information Preservation

  • Conference paper
  • 837 Accesses

Abstract

We propose a formalized approach for the characterization of the phenomenon of emergence, based on information-theoretic criteria. The proposed mechanism of description fits in well with existing approaches for the characterization of complex systems and also has ramifications towards existing algebraic models for coordinatizations of complex systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. C. Adami. Introduction to Artificial Life. Springer, 1998.

    Google Scholar 

  2. C. Adami, C. Ofria, and T. C. Collier. Evolution of biological complexity. Proc. Natl Acad. Sci. USA, 97:4463–4468, 2000.

    Article  ADS  Google Scholar 

  3. J. F. Adams. Lectures on Lie Groups. W. A. Benjamin, Inc., New York, Amsterdam, 1969.

    MATH  Google Scholar 

  4. Y. Bar-Yam. Dynamics of Complex Systems. Addison-Wesley, 1997.

    Google Scholar 

  5. M. Born and K. Huang. Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford, England, 1954.

    MATH  Google Scholar 

  6. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York. 1991.

    Book  MATH  Google Scholar 

  7. J. P. Crutchfield. The calculi of emergence: Computation, dynamics, and induction. Physica D, pages 11–54, 1994.

    Google Scholar 

  8. G. Deco and B. Schürmann. Information Dynamics: Foundations and Applications. Springer, 2001.

    Google Scholar 

  9. R. Der. Selforganized robot behavior from the principle of homeokinesis. In H.-M. Gro, K. Debes, and H.-J. Bhme, editors, Proc. Workhop SOAVE’ 2000 (Selbstorganisation von adaptivem Verhalten), volume 643 of Fortschritt-Berichte VDI, Reihe 10, pages 39–46, Ilmenau, 2000. VDI Verlag.

    Google Scholar 

  10. H. Haken. Advanced synergetics. Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  11. H. Haken. Information and Self-Organization. Springer Series in Synergetics. Springer, 2000.

    Google Scholar 

  12. I. Harvey. The 3 es of artificial life: Emergence, embodiment and evolution. Invited talk at Artificial Life VII. 1.-6. August, Portland, August 2000.

    Google Scholar 

  13. A. S. Klyubin, D. Polani, and C. L. Nehaniv. Organization of the information flow in the perception-action loop of evolved agents. Technical Report 400, Department of Computer Science, Faculty of Engineering and Information Sciences, University of Hertfordshire, 2004. Accepted to Evolvable Hardware.

    Google Scholar 

  14. A. I. Mees. Dynamics of feedback systems. John Wiley & sons, Ltd., 1981.

    Google Scholar 

  15. C. L. Nehaniv. Algebraic models for understanding: Coordinate systems and cognitive empowerment. In B. G. J. P. Marsh, C. L. Nehaniv, editor. Proceedings of the Second International Conference on Cognitive Technology: Humanizing the Information Age. pages 147–162. IEEE Computer Society Press, 1997.

    Google Scholar 

  16. T. Nomura. Formal descriptions of autopoiesis based on the theory of category. In J. Kelemen and P. Sosik, editors, Advances in Artificial Life (Proc. 6th European Conference on Artificial Life, Prague, September 10-14, 2001), LNCS, pages 700–703. Springer, 2001.

    Google Scholar 

  17. A. Penn. Steps towards a quantitative analysis of individuality and its maintenance: A case study with multi-agent systems. In D. Polani, J. Kim, and T. Martinetz, editors, Fifth German Workshop on Artificial Life, March 18-20, 2002, Lübeck, Germany. IOS Press Infix, Aka, 2002.

    Google Scholar 

  18. S. Rasmussen, N. Baas, B. Mayer, M. Nilsson, and M. W. Olesen. Ansatz for dynamical hierarchies. Artificial Life, 7:329–353, 2001.

    Article  Google Scholar 

  19. E. M. A. Ronald, M. Sipper, and M. S. Capcarrère. Design, observation, surprise! a test of emergence. Artificial Life Journal, 5(3):225–239, 1999.

    Article  Google Scholar 

  20. W. Rudin. Fourier Analysis on Groups. Wiley, New York, 1990.

    Book  MATH  Google Scholar 

  21. N. Slonim, N. Friedman, and T. Tishby. Agglomerative multivariate information bottleneck. In Neural Information Processing Systems (NIPS 01), 2001.

    Google Scholar 

  22. H. Touchette and S. Lloyd. Information-theoretic limits of control. Phys. Rev. Lett., 84:1156, 2000.

    Article  ADS  Google Scholar 

  23. S. Winter. Zerlegung von gekoppelten Dynamischen Systemen (Decomposition of Coupled Dynamical Systems. Diploma thesis, Johannes Gutenberg-Universität Mainz, 1996. (In German).

    Google Scholar 

  24. D. H. Wolpert and W. G. Macready. Self-dissimilarity: An empirically observable complexity measure. In Y. Bar-Yam, editor, Proc. of the International Conference on Complex Systems, Nashua, NH, 21-26 Sept, 1997. NECSL 1997.

    Google Scholar 

  25. M. Wimstel, D. Polani, T. Uthmann, and J. Perl. Behavior classification with self-organizing maps. In P. Stone, T. Balch, and G. Kraetzschmar, editors, RoboCup-2000: Robot Soccer World Cup IV. pages 108–118. Springer Verlag, Berlin, 2001. Winner of the RoboCup 2000 Scientific Challenge Award.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Polani, D. (2011). Defining Emergent Descriptions by Information Preservation. In: Minai, A.A., Braha, D., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17635-7_34

Download citation

Publish with us

Policies and ethics