Skip to main content

A Differential Evolution Based Approach to Estimate the Shape and Size of Complex Shaped Anomalies Using EIT Measurements

  • Conference paper
Grid and Distributed Computing, Control and Automation (GDC 2010, CA 2010)

Abstract

EIT image reconstruction is an ill-posed problem, the spatial resolution of the estimated conductivity distribution is usually poor and the external voltage measurements are subject to variable noise. Therefore, EIT conductivity estimation cannot be used in the raw form to correctly estimate the shape and size of complex shaped regional anomalies. An efficient algorithm employing a shape based estimation scheme is needed. The performance of traditional inverse algorithms, such as the Newton Raphson method, used for this purpose is below par and depends upon the initial guess and the gradient of the cost functional. This paper presents the application of differential evolution (DE) algorithm to estimate complex shaped region boundaries, expressed as coefficients of truncated Fourier series, using EIT. DE is a simple yet powerful population-based, heuristic algorithm with the desired features to solve global optimization problems under realistic conditions. The performance of the algorithm has been tested through numerical simulations, comparing its results with that of the traditional modified Newton Raphson (mNR) method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vauhkonen, M.: Electrical impedance tomography and prior information. PhD Thesis University of Kuopio, Finland (1997), http://venda.uku.fi/~mvauhkon

  2. Kim, B.S., Isaacson, D., Xia, H., Kao, T., Newell, J., Saulnier, G.: A method for analyzing electrical impedance spectroscopy data from breast cancer patients. Physiol. Meas. 28, S237–S246 (2007)

    Google Scholar 

  3. Brown, B.H., Barber, D.C., Morica, A.H., Leathard, A.D.: Cardiac and respiratory related electric impedance changes in the human thorax. IEEE Trans. Biomed. Eng. 41, 729–733 (1994)

    Article  Google Scholar 

  4. Deibele, J.M., Luepschen, H., Leonhardt, S.: Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography. Physiol. Meas. 29, S1–S14 (2008)

    Google Scholar 

  5. Mann, R., Dickin, F.J., Wang, M., Dyakowski, T., Williams, R.A., Edwards, R.B., et al.: Application of electrical resistance tomography to interrogate mixing processes at plant scale. Chem. Eng. Sci. 52, 2087–2097 (1997)

    Article  Google Scholar 

  6. Khambampati, A.K., Rashid, A., Kim, S., Soleimani, M., Kim, K.Y.: Unscented Kalman filter approach to track moving interfacial boundary in sedimentation process using three-dimensional electrical impedance tomography. Phil. Trans. R. Soc. A. 367, 3095–3120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Han, D.K., Prosperetti, A.: A shape decomposition technique in electrical impedance tomography. J. Comput. Phys. 155, 75–95 (1999)

    Article  MATH  Google Scholar 

  8. Kolehmainen, V., Voutilainen, A., Kaipio, J.P.: Estimation of non-stationary region boundaries in EIT—state estimation approach. Inverse Problems 17, 1937–1956 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rashid, A., Kim, B.S., Khambampati, A.K., Liu, D., Kim, S., Kim, K.Y.: Dynamic boundary estimation of human heart within a complete cardiac cycle using electrical impedance tomography. J.Phys.: Conf. Ser. 224, 012042 (2010)

    Google Scholar 

  10. Back, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evolut. Comput. 1, 1–23 (1993)

    Article  Google Scholar 

  11. Storn, R., Price, K.: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J. of Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Spears, W.: Crossover or Mutation? In: Foundations of Genetic Algorithms Workshop, vol. 2, pp. 221–237 (1992)

    Google Scholar 

  13. Brest, J., Boškovic, B., Greiner, S., Žumer, V., Sepesy Maucec, M.: Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft. Comput. 11, 617–629 (2007)

    Article  MATH  Google Scholar 

  14. Brest, J., Greiner, S., Boškovic, B., Mernik, M., Žumer, V.: Selfadapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)

    Article  Google Scholar 

  15. Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Reading (1989)

    MATH  Google Scholar 

  16. Rolnik, V.P., Seleghim Jr. P.: A specialized genetic algorithm for the electrical impedance tomography of two-phase flows. J. Braz. Soc. Mech. Sci. & Eng. 28, 378–389 (2006)

    Article  Google Scholar 

  17. Ali, M.M., Törn, A.: Population set-based global optimization algorithms: some modifications and numerical studies. Comput. Oper. Res. 31, 1703–1725 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gong, W., Cai, Z., Ling, C.X.: DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput, 1–21 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rashid, A., Khambampati, A.K., Kim, B.S., Liu, D., Kim, S., Kim, K.Y. (2010). A Differential Evolution Based Approach to Estimate the Shape and Size of Complex Shaped Anomalies Using EIT Measurements. In: Kim, Th., Yau, S.S., Gervasi, O., Kang, BH., Stoica, A., Ślęzak, D. (eds) Grid and Distributed Computing, Control and Automation. GDC CA 2010 2010. Communications in Computer and Information Science, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17625-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17625-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17624-1

  • Online ISBN: 978-3-642-17625-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics