Advertisement

Service Composition

  • George Baryannis
  • Olha Danylevych
  • Dimka Karastoyanova
  • Kyriakos Kritikos
  • Philipp Leitner
  • Florian Rosenberg
  • Branimir Wetzstein
Chapter
  • 904 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6500)

Abstract

In the S-Cube research framework, the Service Composition and Co-ordination (SCC) layer encompasses the functions required for the aggregation of multiple services into a single composite service offering, with the execution of the constituent services in a composition controlled through the Service Infrastructure (SI) layer. The SCC layer manages the control and data flow between the services in a service-based application by, for example, specifying workflow models and using a workflow engine for runtime control of service execution.

This chapter presents an overview of the state-of-the-art in service composition modeling and covers two main areas: service composition models and languages and approaches to the synthesis of service compositions including model-driven, automated, and QoS-aware service composition. The contents of this chapter can be seen as a basis for aligning and improving existing approaches and solutions for service composition and provide directions for future S-Cube research.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPEL for semantic web services (BPEL4SWS). In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part I. LNCS, vol. 4805, pp. 179–188. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Alonso, G., Dadam, P., Rosemann, M. (eds.): BPM 2007. LNCS, vol. 4714. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Web Services Business Activity Framework (WS-BusinessActivity). Version 1.1 (April 2007), http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf
  4. 4.
    Web Services Coordination (WS-Coordination) Version 1.1 (April 2007), http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-os.pdf
  5. 5.
    Akkiraju, R., Verma, K., Goodwin, R., Doshi, P., Lee, J.: Executing Abstract Web Process Flows. In: Proceedings of the Workshop on Planning and Scheduling for Web and Grid Services of the ICAPS ’04 Conference, Whistler, British Columbia, Canada (2004)Google Scholar
  6. 6.
    Alevizou, V., Plexousakis, D.: Enhanced Specifications for Web Service Composition. In: ECOWS ’06: Proceedings of the European Conference on Web Services, Zurich, Switzerland, pp. 223–232. IEEE Computer Society (2006)Google Scholar
  7. 7.
    Arkin, A.: Business Process Modeling Language (BPML) (November 2002)Google Scholar
  8. 8.
    Balzer, S., Liebig, T., Wagner, M.: Pitfalls of OWL-S – A Practical Semantic Web Use Case. In: ICSOC’ 04: Proceedings of the 2nd International Conference on Service Oriented Computing, New York, NY, USA, November 2004, pp. 289–298 (2004)Google Scholar
  9. 9.
    Barros, A., Dumas, M., Oaks, P.: Standards for Web Service Choreography and Orchestration: Status and Perspectives. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 61–74. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Benatallah, B., Dumas, M., Maamar, Z.: Definition and Execution of Composite Web Services: The SELF-SERV Project. IEEE Data Eng. Bull. 25(4), 47–52 (2002)Google Scholar
  12. 12.
    Börger, E.: High Level System Design and Analysis Using Abstract State Machines. In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp. 1–43. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and analysis of e-service composition. In: WWW, pp. 403–410 (2003)Google Scholar
  14. 14.
    Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Towards a formal framework for choreography. In: WETICE, pp. 107–112. IEEE Computer Society (2005)Google Scholar
  15. 15.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning of Composite Web Services. In: Proceedings of the IEEE International Conference on Web Services (ICWS’05), Orlando, FL, USA, pp. 121–129 (2005)Google Scholar
  16. 16.
    Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for Workflows and Web Service Processes. Journal of Web Semantics 1(3), 281–308 (2004)CrossRefGoogle Scholar
  17. 17.
    Carman, M., Serafini, L., Traverso, P.: Web Service Composition as Planning. In: Workshop on Planning for Web Services in ICAPS’03, Trento, Italy, AAAI (2003)Google Scholar
  18. 18.
    Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing 6(2), 86–93 (2002)CrossRefGoogle Scholar
  19. 19.
    Curbera, F., Ferguson, D.F., Nally, M., Stockton, M.L.: Toward a programming model for service-oriented computing. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 33–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Decker, G.: Realizability of interaction models. In: ZEUS. CEUR Workshop Proceedings, vol. 438, pp. 55–60. CEUR-WS.org (2009)Google Scholar
  21. 21.
    Decker, G., Barros, A.: Interaction modeling using BPMN. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 208–219. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for modeling choreographies. In: ICWS, pp. 296–303. IEEE Computer Society (2007)Google Scholar
  23. 23.
    Decker, G., Overdick, H., Zaha, J.M.: On the suitability of ws-cdl for choreography modeling. In: Weske, M., Nüttgens, M. (eds.) EMISA. LNI, vol. 95, pp. 21–33, GI (2006)Google Scholar
  24. 24.
    Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Erol, K., Hendler, J., Nau, D.S.: Semantics for HTN Planning. Technical Report CS-TR-3239, UM Computer Science Department (1994)Google Scholar
  26. 26.
    Erol, K., Hendler, J.A., Nau, D.S.: UMCP: A Sound and Complete Procedure for Hierarchical Task-network Planning. In: AIPS’ 94: 2nd International Conference on AI Planning Systems, Chicago, IL, USA, pp. 249–254. Morgan Kaufmann, San Francisco (1994)Google Scholar
  27. 27.
    Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema. W3C Member Submission (2007)Google Scholar
  28. 28.
    Fu, X., Bultan, T., Su, J.: Realizability of conversation protocols with message contents. Int. J. Web Service Res. 2(4), 68–93 (2005)CrossRefGoogle Scholar
  29. 29.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-aware Service Composition based on Genetic Algorithms. In: Proceedings of the Genetic and Computation Conference (GECCO’05), Washington DC, USA, ACM Press, New York (2005)Google Scholar
  30. 30.
    Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL – The Planning Domain Definition Language. Technical Report CVC TR–98–003/DCS TR–1165, Yale Center for Computational Vision and Control, Version 1.2 (1998)Google Scholar
  31. 31.
    Gronmo, R., Jaeger, M.C.: Model-Driven Semantic Web Service Composition. In: APSEC ’05: Proceedings of the 12th Asia-Pacific Software Engineering Conference, Washington, DC, USA, pp. 79–86. IEEE Computer Society (2005)Google Scholar
  32. 32.
    Hauser, R., Koehler, J.: Compiling Process Graphs into Executable Code. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 317–336. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Huang, Y., Wang, H.: A petri net semantics for web service choreography. In: SAC, pp. 1689–1690. ACM (2007)Google Scholar
  34. 34.
    Huhns, M.N., Singh, M.P.: Service-Oriented Computing: Key Concepts and Principles. IEEE Internet Computing 9(1), 75–81 (2005)CrossRefGoogle Scholar
  35. 35.
    Jaeger, M.C., Mühl, G., Golze, S.: QoS-Aware Composition of Web Services: An Evaluation of Selection Algorithms. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 646–661. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation for Service Composition using Workflow Patterns. In: Proceedings of the 8th International Enterprise Distributed Object Computing Conference (EDOC’04), Monterey, California, USA, September 2004, pp. 149–159. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  37. 37.
    Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation in Web Service Compositions. In: Proceedings of the IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE’05), Hong Kong, China, March 2005, IEEE Press, Los Alamitos (2005)Google Scholar
  38. 38.
    Jianhong, Z., Shensheng, Z., Jian, C., Yujie, M.: Improved HTN Planning Approach for Service Composition. In: SCC ’04: Proceedings of the 2004 IEEE International Conference on Services Computing, Shanghai, China, pp. 609–612. IEEE Computer Society (2004)Google Scholar
  39. 39.
    Khalaf, R., Leymann, F.: On web services aggregation. In: Benatallah, B., Shan, M.-C. (eds.) TES 2003. LNCS, vol. 2819, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  40. 40.
    Koehler, J., Hauser, R., Hauser, R., Kapoor, S., Wu, F.Y., Kumaran, S.: A Model-Driven Transformation Method. In: EDOC ’03: Proceedings of the 7th International Conference on Enterprise Distributed Object Computing, Washington, DC, USA, p. 186. IEEE Computer Society (2003)Google Scholar
  41. 41.
    Kopp, O., Leymann, F.: Choreography design using WS-BPEL. IEEE Data Eng. Bull. 31(3), 31–34 (2008)Google Scholar
  42. 42.
    Korhonen, J., Pajunen, L., Puustjärvi, J.: Automatic Composition of Web Service Workflows Using a Semantic Agent. In: WI ’03: Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence, Halifax, Canada, p. 566. IEEE Computer Society, Google Scholar
  43. 43.
    Lausen, H., Polleres, A., Roman, D.: Web Service Modelling Ontology (WSMO). W3C Member Submission (2005)Google Scholar
  44. 44.
    Lécué, F., Silva, E., Pires, L.F.: A Framework for Dynamic Web Services Composition. In: Pautasso, C., Gschwind, T. (eds.) WEWST07: Proceedings of the 2nd ECOWS Workshop on Emerging Web Services Technology, Halle, Germany, vol. 313, CEUR (2007)Google Scholar
  45. 45.
    Lécué, F., Léger, A.: A formal model for semantic web service composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 385–398. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  46. 46.
    Leymann, F.: Web services flow language (wsfl 1.0). Technical report, IBM Corporation (May 2001)Google Scholar
  47. 47.
    Leymann, F., Pottinger, S.: Rethinking the Coordination Models of WS-Coordination and WS-CF. In: Third IEEE European Conference on Web Services (ECOWS 2005), November 2005, pp. 160–169. IEEE Computer Society (2005)Google Scholar
  48. 48.
    Liu, Y., Ngu, A.H.H., Zeng, L.: QoS Computation and Policing in Dynamic Web Service Selection. In: Proceedings of the 13th International Conference on World Wide Web, WWW’04 (2004)Google Scholar
  49. 49.
    Luo, N., Yan, J., Liu, M.: Towards efficient verification for process composition of semantic web services. In: Proceedings of the 2007 IEEE International Conference on Services Computing (SCC 2007), Salt Lake City, Utah, USA, 9-13 July 2007, pp. 220–227 (2007)Google Scholar
  50. 50.
    Majithia, S., Walker, D.W., Gray, W.A.: A Framework for Automated Service Composition in Service-Oriented Architectures. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 269–283. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  51. 51.
    Mancioppi, M., Carro, M., van den Heuvel, W.-J., Papazoglou, M.P.: Sound multi-party business protocols for service networks. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 302–316. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  52. 52.
    Martens, A., Moser, S., Gerhardt, A., Funk, K.: Analyzing compatibility of bpel processes. In: AICT/ICIW, p. 147. IEEE Computer Society (2006)Google Scholar
  53. 53.
    McIlraith, S.A., Son, T.C.: Adapting Golog for Composition of Semantic Web Services. In: Fensel, D., Giunchiglia, F., McGuinness, D.L., Williams, M.-A. (eds.) KR, pp. 482–496. Morgan Kaufmann, San Francisco (2002)Google Scholar
  54. 54.
    Mendling, J., Hafner, M.: From inter-organizational workflows to process execution: Generating BPEL from WS-CDL. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 506–515. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  55. 55.
  56. 56.
    Montangero, C., Semini, L.: A logical view of choreography. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 179–193. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  57. 57.
    Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-Aware Service Composition in Dino. In: Proceedings of the Fifth European Conference on Web Services (ECOWS’05), Halle (Saale), November 2007, pp. 3–12 (2007)Google Scholar
  58. 58.
    Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPELlight. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 214–229. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  59. 59.
    OMG: Business Process Modeling Notation Version 1.1. OMG Recommendation, OMG (February 2008), http://www.bpmn.org/Documents/BPMN%201-1%20Specification.pdf
  60. 60.
    Web Services Business Process Execution Language Version 2.0 – OASIS Standard. Technical report, Organization for the Advancement of Structured Information Standards (OASIS) (Mar. 2007)Google Scholar
  61. 61.
    Orriëns, B., Yang, J., Papazoglou, M.P.: Model Driven Service Composition. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 75–90. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  62. 62.
    Ouyang, C., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Translating BPMN to BPEL. Technical Report BPM-06-02, BPM Center Report (2006)Google Scholar
  63. 63.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: State of the Art and Research Challenges. Computer 40(11), 38–45 (2007)CrossRefGoogle Scholar
  64. 64.
    Pautasso, C., Alonso, G.: The jopera visual composition language. Journal of Visual Languages and Computing (JVLC) 16, 119–152 (2005)CrossRefGoogle Scholar
  65. 65.
    Peer, J.: A PDDL based tool for automatic web service composition. In: Ohlbach, H.J., Schaffert, S. (eds.) PPSWR 2004. LNCS, vol. 3208, pp. 149–163. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  66. 66.
    Pfadenhauer, K., Kittl, B., Dustdar, S.: Challenges and Solutions for Model Driven Web Service Composition. In: WETICE ’05: Proceedings of the 14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise, Washington, DC, USA, pp. 126–134. IEEE Computer Society (2005)Google Scholar
  67. 67.
    Phan, M., Hattori, F.: Automatic Web Service Composition Using ConGolog. In: ICDCS Workshops, IEEE Computer Society (2006)Google Scholar
  68. 68.
    Pistore, M., Barbon, F., Bertoli, P.G., Shaparau, D., Traverso, P.: Planning and monitoring web service composition. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI), vol. 3192, pp. 106–115. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  69. 69.
    Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of choreography. In: WWW, pp. 973–982. ACM (2007)Google Scholar
  70. 70.
    Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  71. 71.
    Rosenberg, F., Leitner, P., Michlmayr, A., Celikovic, P., Dustdar, S.: Towards composition as a service - a quality of service driven approach. In: Proceedings of the 25th International Conference on Data Engineering (ICDE2010), March 2009, pp. 1733–1740 (2009)Google Scholar
  72. 72.
    Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping Performance and Dependability Attributes of Web Services. In: Proceedings of the IEEE International Conference on Web Services (ICWS’06), Chicago, USA, IEEE Computer Society (2006)Google Scholar
  73. 73.
    Thatte, S.: XLANG - Web Services for Business Process Design. Microsoft Corporation (2001)Google Scholar
  74. 74.
    Skogan, D., Gronmo, R., Solheim, I.: Web Service Composition in UML. In: EDOC ’04: Proceedings of the Enterprise Distributed Object Computing Conference, Eighth IEEE International, pp. 47–57. IEEE Computer Society (2004)Google Scholar
  75. 75.
    Song, X., Dou, W., Song, W.: A workflow framework for intelligent service composition. In: Workshops at the Grid and Pervasive Computing Conference, 0:11–18 (2009)Google Scholar
  76. 76.
    Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service choreographies. In: WS-FM, pp. 1–16 (2007)Google Scholar
  77. 77.
    Sycara, K., et al.: OWL-S 1.0 Release. OWL-S Coalition (2003), http://www.daml.org/services/owl-s/1.0/
  78. 78.
    van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction: Patterns, formalization, and analysis. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)Google Scholar
  79. 79.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)CrossRefGoogle Scholar
  80. 80.
    W3C. Web Services Choreography Description Language Version 1.0. Candidate Recommendation, W3C (November 2005), http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
  81. 81.
    Wiesemann, W., Hochreiter, R., Kuhn, D.: A Stochastic Programming Approach for QoS-Aware Service Composition. In: Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid (CCGrid’08), Lyon, France (May 2008)Google Scholar
  82. 82.
    WS-AtomicTransaction Working Committee. Web Services Atomic Transaction (WS-AtomicTransaction). Version 1.1. OASIS Specification (April 2007)Google Scholar
  83. 83.
    WS-CF Working Comittee. Web Services Coordination Framework Specification (WS-CF) Version 1.0. OASIS Specification (December 2004)Google Scholar
  84. 84.
    Yang, H., Zhao, X., Qiu, Z., Pu, G., Wang, S.: A formal model for web service choreography description language. In: ICWS, pp. 893–894. IEEE Computer Society (2006)Google Scholar
  85. 85.
    Yu, T., Zhang, Y., Lin, K.-J.: Efficient Algorithms for Web Services Selection with End-to-End QoS Constraints. ACM Trans. Web 1(1), 6 (2007)CrossRefGoogle Scholar
  86. 86.
    Meersman, R., Tari, Z.: Let’s dance: A language for service behavior modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 145–162. Springer, Heidelberg (2006)Google Scholar
  87. 87.
    Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web Services Composition. In: Proceedings of the 12th International Conference on World Wide Web (WWW’03), New York, NY, USA, pp. 411–421. ACM Press, New York (2003)Google Scholar
  88. 88.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • George Baryannis
    • 1
  • Olha Danylevych
    • 2
  • Dimka Karastoyanova
    • 2
  • Kyriakos Kritikos
    • 1
  • Philipp Leitner
    • 3
  • Florian Rosenberg
    • 3
  • Branimir Wetzstein
    • 2
  1. 1.University of CreteGreece
  2. 2.University of StuttgartGermany
  3. 3.Technische Universität WienViennaAustria

Personalised recommendations