Developer Toolkit for Embedded Fuzzy System Based on E-Fuzz

  • C. Chantrapornchai
  • K. Sripanomwan
  • O. Chaowalit
  • J. Pipatpaisarn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6485)


In this work, we propose a development toolkit, called E-Fuzz-Wizard to help fuzzy system designers for designing embedded fuzzy systems. The toolkit composes of software and hardware that enables creating the rapid prototype. It contains the examples which use the hardware and code generated to produce a prototype. The software has a visual interface which allows the user to specify the requirement of fuzzy systems in terms of the fuzzy set characteristics, inference methods, rules and defuzzification method. It generates the code in C that is runable in the chosen microcontroller platform. E-Fuzz Wizard also integrates unique features such as concurrent and real-time fuzzy system design as well as hardware mapping and customization. The generated code will facilitate the embedded fuzzy system development process. The toolkit is easy to use and facilitate the beginners to develop a fuzzy system.


Embedded Systems E-Fuzz Fuzzy Design Tools 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed, M.A., Saliu, M.O., AlGhamdi, J.: Adaptive Fuzzy Logic-Based Framework For Software Development Effort Prediction. Information and Software Technology 47, 31–48 (2005)CrossRefGoogle Scholar
  2. 2.
    Iqbal, A., Khan, I., Dar, N.U., He, N.: A Self-Developing Fuzzy Expert System, Designed for Optimization of Machining Process. In: Proceedings of the World Congress on Engineering, vol. III (2008)Google Scholar
  3. 3.
    Ascia, G., Catania, V.: An Efficient Hardware Architecture to Support Complex Fuzzy Reasoning. International Journal on Artificial Intelligence Tools 5(1-2), 41–60 (1996)CrossRefGoogle Scholar
  4. 4.
    Chantrapornchai, C.: Rapid prototyping Methodology and Environment for Fuzzy Applications. In: Optimization Techniques 1973. LNCS, vol. 4, pp. 940–949. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chen, B.T., Chen, Y.S., Hsu, W.H.: Performance evaluation of a parameterized fuzzy processor (PFP). Fuzzy sets and systems 81(3), 293–309 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Frías-Martínez, E.: Design of a Lukasiewicz rule-driven fuzzy processor. Soft Computing - A Fusion of Foundations, Methodologies and Applications 7(1), 65–71 (2002)zbMATHGoogle Scholar
  7. 7.
    Gabrielli, E.G., Masetti, M.: Design of a family of VLSI high speed fuzzy processors. In: IEEE Fuzz 1996 (1996)Google Scholar
  8. 8.
    Ghaus, C.: Fuzzy model and control of a fan-coil. Energy and Buildings Journal 33, 545–551 (2001)CrossRefGoogle Scholar
  9. 9.
    Falchieri, D., Gabrielli, A., Gandolfi, E.: Very fast rate 2-input fuzzy processor for high energy physics. Fuzzy Sets and Systems 132, 261–272 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Li, J.H., Lim, M.H., Cao, Q.: Evolvable Fuzzy Hardware for Real-time Embedded Control in Packet Switching. Evolvable Machines 161, 205–227 (2005)CrossRefGoogle Scholar
  11. 11.
    Mateou, N.H., Andreou, A.S.: A framework for developing intelligent decision support systems using evolutionary fuzzy cognitive maps. Journal of Intelligent and Fuzzy Systems 19(27), 151–170 (2008)zbMATHGoogle Scholar
  12. 12.
    Nishidai, Hajimi: Fuzzy reasoning and methods, rule setting apparatus and methods. Eurpoean Patent Classification (1997): G06F 9/44. Publication number: EP0513829,
  13. 13.
    Fumitaka, N., Masamitsu, I.: Method for generating fuzzy control program. Japanese Patent no. JP7160306.3 (1995),
  14. 14.
    Rasmussen, D., Yager, R.R.: SummarySQL - A Fuzzy Tool For Data Mining. Intelligent Data Analysis (1997)Google Scholar
  15. 15.
    Song, C.T.P., Quigley, S.F., Pammu, S.: Novel analogue fuzzy inference processor. In: Proceedings of ISCAS, vol. 3, pp. 247–250 (1998)Google Scholar
  16. 16.
    Pagni, A., et al.: Automatic Synthesis Analysis Implementation of a Fuzzy Controller. In: IEEE Int’l Conf. Fuzzy Systems, pp. 105–110. IEEE Process, Piscataway (1993)Google Scholar
  17. 17.
    Pammu, S.: Novel Analogue Fuzzy Inference Processor. In: Proceedings of ISCAS, vol. 3, pp. 247–250 (1998)Google Scholar
  18. 18.
    Ross, T.J.: Fuzzy Sets. Fuzzy Logic and Fuzzy Systems: Theory and Applications. McGraw Hill, New York (1995)Google Scholar
  19. 19.
    Salpura, V., Gschwind, M.: Hardware/Software Co-Design of a Fuzzy RISC Processor. Proceedings of the IEEE 83, 422–434 (1995)CrossRefGoogle Scholar
  20. 20.
    Shi, B., Lin, G.: Programmable and expandable fuzzy processor for pattern recognition. United States Patent 6272476 (2001),
  21. 21.
    Masaki, T., Hiroyuki, W.: A VLSI implementation of a fuzzy inference engine: toward an expert system on a chip. International Journal on Information Sciences 38, 147–163 (1986)CrossRefGoogle Scholar
  22. 22.
    Tsutomu, M.: Fuzzy processor, European  Patent EP0392494 (1990)Google Scholar
  23. 23.
    Viot Greg, J., Sibigtrogth James, M., Broseghinl James, L.: A Method for performing a fuzzy logic operation in data processor. European Patent: EP0574714 (2000)Google Scholar
  24. 24.
    Zhang, Y.-Q., Kandel, A.: Fuzzy CPU Scheduling. International Journal on Artificial Intelligence Tools 6(2), 211–225 (1997)CrossRefGoogle Scholar
  25. 25.
  26. 26.
  27. 27.
  28. 28.
  29. 29.
  30. 30.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • C. Chantrapornchai
    • 1
  • K. Sripanomwan
    • 1
  • O. Chaowalit
    • 1
  • J. Pipatpaisarn
    • 1
  1. 1.Department of Computing, Faculty of ScienceSilpakorn UniversityThailand

Personalised recommendations