Advertisement

Wavelet-Chaos-Neural Network Models for EEG-Based Diagnosis of Neurological Disorders

  • Hojjat Adeli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6485)

Abstract

In this Keynote Lecture an overview of the author’s research for automated electroencephalogram (EEG)-based diagnosis of neurological disorders is presented. Sample research and wavelet-chaos-neural network models developed by the author and his research associates in recent years for diagnosis of epilepsy, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), and the Alzheimer’s Disease (AD) are reviewed briefly. The significant impact of this research on the future of neurology practice and its ramification are discussed.

Keywords

Autism Spectrum Disorder Attention Deficit Hyperactivity Disorder Neural System Radial Basis Function Neural Network Seizure Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acharya, R., Chua, E.C.P., Chua, K.C., Min, L.C., Tamura, T.: Analysis and Automatic Identification of Sleep Stages using Higher Order Spectra. International Journal of Neural Systems 20(6) (2010)Google Scholar
  2. 2.
    Adeli, H., Ghosh-Dastidar, S.: Automated EEG-based Diagnosis of Neurological Disorders - Inventing the Future of Neurology. CRC Press, Taylor & Francis, Boca Raton, Florida (2010)CrossRefGoogle Scholar
  3. 3.
    Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: Alzheimer’s Disease: Models of Computation and Analysis of EEGs. Clinical EEG and Neuroscience 36(3), 131–140 (2005)CrossRefGoogle Scholar
  4. 4.
    Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: Alzheimer’s Disease and Models of Computation: Imaging, Classification, and Neural Models. Journal of Alzheimer’s Disease 7(3), 187–199 (2005)CrossRefGoogle Scholar
  5. 5.
    Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A Wavelet-Chaos Methodology for Analysis of EEGs and EEG Sub-bands to detect Seizure and Epilepsy. IEEE Transactions on Biomedical Engineering 54(2), 205–211 (2007)CrossRefGoogle Scholar
  6. 6.
    Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: A Spatio-temporal Wavelet-Chaos Methodology for EEG-based Diagnosis of Alzheimer’s Disease. Neuroscience Letters 444(2), 190–194 (2008)CrossRefGoogle Scholar
  7. 7.
    Adeli, H., Hung, S.L.: An Adaptive Conjugate Gradient Learning Algorithm for Effective Training of Multilayer Neural Networks. Applied Mathematics and Computation 62(1), 81–102 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Adeli, H., Karim, A.: Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Management and Engineering, ASCE 123(4), 450–458 (1997)CrossRefGoogle Scholar
  9. 9.
    Adeli, H., Karim, A.: Fuzzy-Wavelet RBFNN Model for Freeway Incident Detection. Journal of Transportation Engineering 126(6), 464–471 (2000)CrossRefGoogle Scholar
  10. 10.
    Adeli, H., Kim, H.: Wavelet-Hybrid Feedback Least Mean Square Algorithm for Robust Control of Structures. Journal of Structural Engineering, ASCE 130(1), 128–137 (2004)CrossRefGoogle Scholar
  11. 11.
    Adeli, H., Park, H.S.: Counter Propagation Neural Network in Structural Engineering. Journal of Structural Engineering, ASCE 121(8), 1205–1212 (1995)CrossRefGoogle Scholar
  12. 12.
    Adeli, H., Park, H.S.: A Neural Dynamics Model for Structural Optimization - Theory. Computers and Structures 57(3), 383–390 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Adeli, H., Park, H.S.: Optimization of Space Structures by Neural Dynamics. Neural Networks 8(5), 769–781 (1995)CrossRefGoogle Scholar
  14. 14.
    Adeli, H., Samant, A.: An Adaptive Conjugate Gradient Neural Network - Wavelet Model for Traffic Incident Detection. Computer-Aided Civil and Infrastructure Engineering 15(4), 251–260 (2000)CrossRefGoogle Scholar
  15. 15.
    Adeli, H., Zhou, Z., Dadmehr, N.: Analysis of EEG Records in an Epileptic Patient Using Wavelet Transform. Journal of Neuroscience Methods 123(1), 69–87 (2003)CrossRefGoogle Scholar
  16. 16.
    Ahmadlou, M., Adeli, H.: Enhanced Probabilistic Neural Network with Local Decision Circles: A Robust Classifier. Integrated Computer-Aided Engineering 17(3), 197–210 (2010)Google Scholar
  17. 17.
    Ahmadlou, M., Adeli, H.: Fuzzy Synchronization Likelihood with Application to Attention-Deficit/Hyperactivity Disorder. Clinical EEG and Neuroscience 42(1) (2011)Google Scholar
  18. 18.
    Ahmadlou, M., Adeli, H.: Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD. Clinical EEG and Neuroscience 41(1), 1–10 (2010)CrossRefGoogle Scholar
  19. 19.
    Ahmadlou, A., Adeli, H., Adeli, A.: Fractality and a Wavelet-Chao Methodology for EEG-based Diagnosis of Alzheimer’s Disease. Alzheimer Disease and Associated Disorders 24(4) (October 2010)Google Scholar
  20. 20.
    Ahmadlou, M., Adeli, H., Adeli, A.: New Diagnostic EEG Markers of the Alzheimer’s Disease Using Visibility Graph. Journal of Neural Transmission 117(9), 1099–1109 (2010)CrossRefGoogle Scholar
  21. 21.
    Ahmadlou, M., Adeli, H., Adeli, A.: Fractality and a Wavelet-Chaos-Neural Network Methodology for EEG-based Diagnosis of Autistic Spectrum Disorder. Journal of Clinical Neurophysiology 27(5), 328–333 (2010)CrossRefGoogle Scholar
  22. 22.
    Banchs, R., Klie, H., Rodriguez, A., Thomas, S.G., Wheeler, M.F.: A Neural Stochastic Multiscale Optimization Framework for Sensor-based Parameter Estimation. Integrated Computer-Aided Engineering 14(3), 213–223 (2007)Google Scholar
  23. 23.
    Benedic, Y., Wira, P., Merckle, J.: A New Method for the Re-Implementation of Threshold Logic Functions with Cellular Neural Networks. International Journal of Neural Systems 18(4), 293–303 (2008)CrossRefGoogle Scholar
  24. 24.
    Boto-Giralda, D., Díaz-Pernas, F.J., González-Ortega, D., Díez-Higuera, J.F., Antón-Rodríguez, M., Martínez-Zarzuela, M.: Wavelet-Based Denoising for Traffic Volume Time Series Forecasting with Self-Organizing Neural Networks. Computer-Aided Civil and Infrastructure Engineering 25(7) (2010)Google Scholar
  25. 25.
    Carden, E.P., Brownjohn, J.M.W.: Fuzzy Clustering of Stability Diagrams for Vibration-Based Structural Health Monitoring. Computer-Aided Civil and Infrastructure Engineering 23(5), 360–372 (2008)CrossRefGoogle Scholar
  26. 26.
    Chakravarthy, N., Sabesan, S., Tsakalis, K., Iasemidis, L.: Controling Synchronization in a Neural-level Population Model. International Journal of Neural Systems 17(2), 123–138 (2007)CrossRefGoogle Scholar
  27. 27.
    Chen, M., Jiang, C.S., Wu, Q.X., Chen, W.H.: Synchronization in Arrays of Uncertain Delay Neural Networks by Decentralized Feedback Control. International Journal of Neural Systems 17(2), 115–122 (2007)CrossRefGoogle Scholar
  28. 28.
    Chiappalone, M., Vato, A., Berdondini, L., Koudelka, M., Martinoia, S.: Network Dynamics and Synchronous Activity in Cultured Cortical Neurons, vol. 17(2), pp. 87–103 (2007)Google Scholar
  29. 29.
    Christodoulou, M.A., Kontogeorgou, C.: Collision Avoidance in commercial aircraft free fight, via neural networks and non-linear programming. International Journal of Neural Systems 18(5), 371–387 (2008)CrossRefGoogle Scholar
  30. 30.
    Dharia, A., Adeli, H.: Neural Network Model for Rapid Forecasting of Freeway Link Travel Time. Engineering Applications of Artificial Intelligence 16(7-8), 607–613 (2003)CrossRefGoogle Scholar
  31. 31.
    Elragal, H.M.: Improving Neural Networks Prediction accuracy Using Particle Swarm Optimization Combiner. International Journal of Neural Systems 19(5), 387–393 (2009)CrossRefGoogle Scholar
  32. 32.
    Fatehi, A., Abe, K.: Flexible Structure Multiple Modeling Using Irregular Self-Organizing Maps Neural Network. International Journal of Neural Systems 18(3), 233–256 (2008)CrossRefGoogle Scholar
  33. 33.
    Faust, O., Acharya, U.R., Min, L.C., Sputh, B.H.C.: Automatic Identification of Epileptic and Background EEG Signals Using Frequency Domain Parameters. International Journal of Neural Systems 20(2), 159–176 (2010)CrossRefGoogle Scholar
  34. 34.
    Ghosh, B., Basu, B., O’Mahony, M.: Random Process Model for Traffic Flow Using a Wavelet - Bayesian Hierarchical Technique. Computer-Aided Civil and Infrastructure Engineering 25(8) (2010)Google Scholar
  35. 35.
    Ghosh-Dastidar, S., Adeli, H.: Wavelet-Clustering-Neural Network Model for Freeway Incident Detection. Computer-Aided Civil and Infrastructure Engineering 18(5), 325–338 (2003)CrossRefGoogle Scholar
  36. 36.
    Ghosh-Dastidar, S., Adeli, H.: Improved Spiking Neural Networks for EEG Classification and Epilepsy and Seizure Detection. Integrated Computer-Aided Engineering 14(3), 187–212 (2007)Google Scholar
  37. 37.
    Ghosh-Dastidar, S., Adeli, H.: Spiking Neural Networks. International Journal of Neural Systems 19(4), 295–308 (2009)CrossRefGoogle Scholar
  38. 38.
    Ghosh-Dastidar, S., Adeli, H.: A New Supervised Learning Algorithm for Multiple Spiking Neural Networks with Application in Epilepsy and Seizure Detection. Neural Networks 22, 1419–1431 (2009)CrossRefGoogle Scholar
  39. 39.
    Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixed-band Wavelet-Chaos-Neural Network Methodology for Epilepsy and Epileptic Seizure Detection. IEEE Transactions on Biomedical Engineering 54(9), 1545–1551 (2007)CrossRefGoogle Scholar
  40. 40.
    Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Principal Component Analysis-Enhanced Cosine Radial Basis Function Neural Network for Robust Epilepsy and Seizure Detection. IEEE Transactions on Biomedical Engineering 55(2), 512–518 (2008)CrossRefGoogle Scholar
  41. 41.
    Good, L.B., Sabesan, S., Marsh, S.T., Tsakalis, K.S., Iasemidis, L.D.: Control of Synchronization of Brain Dynamics Leads to Control of Epileptic Seizures in Rodents. International Journal of Neural Systems 19(3), 173–196 (2009)CrossRefGoogle Scholar
  42. 42.
    Graf, W., Freitag, S., Kaliske, M., Sickert, J.U.: Recurrent neural networks for uncertain time-dependent structural behavior. Computer-Aided Civil and Infrastructure Engineering 25(5), 322–333 (2010)CrossRefGoogle Scholar
  43. 43.
    Haidar, A.M.A., Mohamed, A., Al-Dabbagh, M., Aini Hussain, A., Masoum, M.: An Intelligent Load Shedding Scheme Using Neural networks & Neuro-Fuzzy. International Journal of Neural Systems 19(6), 473–479 (2009)CrossRefGoogle Scholar
  44. 44.
    He, Z., You, X., Zhou, L., Cheung, Y., Tang, Y.Y.: Writer Identification Using Fractal Dimension of Wavelet Subbands in Gabor Domain. Integrated Computer-Aided Engineering 17(2), 157–165 (2010)Google Scholar
  45. 45.
    Hooshdar, S., Adeli, H.: Toward Intelligent Variable Message Signs in Freeway Work Zones: A Neural Network Approach. Journal of Transportation Engineering 130(1), 83–93 (2004)CrossRefGoogle Scholar
  46. 46.
    Hung, S.L., Adeli, H.: Parallel Backpropagation Learning Algorithms on Cray Y-MP8/864 Supercomputer. Neurocomputing 5(6), 287–302 (1993)CrossRefGoogle Scholar
  47. 47.
    Hung, S.L., Adeli, H.: A Parallel Genetic/Neural Network Learning Algorithm for MIMD Shared Memory Machines. IEEE Transactions on Neural Networks 5(6), 900–909 (1994)CrossRefGoogle Scholar
  48. 48.
    Hung, S.L., Adeli, H.: Object-Oriented Back Propagation and Its Application to Structural Design. Neurocomputing 6(1), 45–55 (1994)CrossRefGoogle Scholar
  49. 49.
    Iglesias, J., Villa, A.E.P.: Emergence of Preferred Firing Sequences in Large Spiking Neural Networks During Simulated Neuronal Development. International Journal of Neural Systems 18(4), 267–277 (2008)CrossRefGoogle Scholar
  50. 50.
    Isokawa, T., Nishimura, H., Kamiura, N., Matsui, N.: Associative memory in quaternionic hopfield neural network. International Journal of Neural Systems 18(2), 135–145 (2008)CrossRefGoogle Scholar
  51. 51.
    Jiang, X., Adeli, H.: Dynamic Wavelet Neural Network for Nonlinear Identification of Highrise Buildings. Computer-Aided Civil and Infrastructure Engineering 20(5), 316–330 (2005)CrossRefGoogle Scholar
  52. 52.
    Jiang, X., Adeli, H.: Pseudospectra, MUSIC, and Dynamic Wavelet Neural Network for Damage Detection of Highrise Buildings. International Journal for Numerical Methods in Engineering 71(5), 606–629 (2007)CrossRefzbMATHGoogle Scholar
  53. 53.
    Jiang, X., Adeli, H.: Dynamic Fuzzy Wavelet Neuroemulator for Nonlinear Control of Irregular Highrise Building Structures. International Journal for Numerical Methods in Engineering 74(7), 1045–1066 (2008)CrossRefzbMATHGoogle Scholar
  54. 54.
    Jin, X.L., Doloi, H.: Modelling Risk Allocation Decision-Making in PPP Projects Using Fuzzy Logic. Computer-Aided Civil and Infrastructure Engineering 24(7), 509–524 (2009)CrossRefGoogle Scholar
  55. 55.
    Jorgensen, T.D., Haynes, B.P., Norlund, C.C.F.: Pruning Artificial Neural Networks using neural complexity measures. International Journal of Neural Systems 18(5), 389–403 (2008)CrossRefGoogle Scholar
  56. 56.
    Karim, A., Adeli, H.: Comparison of the Fuzzy – Wavelet RBFNN Freeway Incident Detection Model with the California Algorithm. Journal of Transportation Engineering 128(1), 21–30 (2002)CrossRefGoogle Scholar
  57. 57.
    Karim, A., Adeli, H.: Incident Detection Algorithm Using Wavelet Energy Representation of Traffic Patterns. Journal of Transportation Engineering, ASCE 128(3), 232–242 (2002)CrossRefGoogle Scholar
  58. 58.
    Karim, A., Adeli, H.: Fast Automatic Incident Detection on Urban and Rural Freeways Using the Wavelet Energy Algorithm. Journal of Transportation Engineering, ASCE 129(1), 57–68 (2003)CrossRefGoogle Scholar
  59. 59.
    Karim, A., Adeli, H.: Radial Basis Function Neural Network for Work Zone Capacity and Queue Estimation. Journal of Transportation Engineering 129(5), 494–503 (2003)CrossRefGoogle Scholar
  60. 60.
    Kim, H., Adeli, H.: Hybrid Control of Smart Structures Using a Novel Wavelet-Based Algorithm. Computer-Aided Civil and Infrastructure Engineering 20(1), 7–22 (2005)CrossRefGoogle Scholar
  61. 61.
    Kim, H., Adeli, H.: Wavelet Hybrid Feedback-LMS Algorithm for Robust Control of Cable-Stayed Bridges. Journal of Bridge Engineering, ASCE 10(2), 116–123 (2005)CrossRefGoogle Scholar
  62. 62.
    Kim, H., Adeli, H.: Hybrid Control of Irregular Steel Highrise Building Structures Under Seismic Excitations. International Journal for Numerical Methods in Engineering 63(12), 1757–1774 (2005)CrossRefzbMATHGoogle Scholar
  63. 63.
    Li, Y., Zhang, T.: Global exponential stability of fuzzy interval delayed neural networks with impulses on time scales. International Journal of Neural Systems 19(6), 449–456 (2009)CrossRefGoogle Scholar
  64. 64.
    Liang, J., Wang, Z., Liu, X.: Global Synchronization in an Array of Discrete-Time Neural Networks with Mixed Coupling and Time-Varying Delays. International Journal of Neural Systems 19(1), 57–63 (2009)CrossRefGoogle Scholar
  65. 65.
    Khashman, A.: Blood Cell Identification Using a Simple Neural Network. International Journal of Neural Systems 18(5), 453–458 (2008)CrossRefGoogle Scholar
  66. 66.
    Kramer, M.A., Chang, F.L., Cohen, M.E., Hudson, D., Szeri, A.J.: Synchronization Measures of the Scalp EEG Can Discriminate Healthy from Alzheimers Subjects. International Journal of Neural Systems 17(2), 61–69 (2007)CrossRefGoogle Scholar
  67. 67.
    Lee, H., Cichocki, A., Choi, S.: Nonnegative Matrix Factorization for Motor Imagery EEG Classification. International Journal of Neural Systems 17(4), 305–317 (2007)CrossRefGoogle Scholar
  68. 68.
    Li, T., Sun, C., Zhao, X., Lin, C.: LMI-Based Asymptotic Stability Analysis of Neural Networks with Time-Varying Delays. International Journal of Neural Systems 18(3), 257–265 (2008)CrossRefGoogle Scholar
  69. 69.
    Montejo, L.A., Kowalsky, M.J.: Estimation of Frequency Dependent Strong Motion Duration via Wavelets and its Influence on Nonlinear Seismic Response. Computer-Aided Civil and Infrastructure Engineering 23(4), 253–264 (2008)CrossRefGoogle Scholar
  70. 70.
    Montina, A., Mendoza, C., Arecchi, F.T.: Role of Refractory Period in Homoclinic Models of Neural Synchronization. International Journal of Neural Systems 17(2), 79–86 (2007)CrossRefGoogle Scholar
  71. 71.
    Nemissi, M., Seridi, H., Akdag, H.: The Labeled Systems of Multiple Neural Networks. International Journal of Neural Systems 18(4), 321–330 (2008)CrossRefGoogle Scholar
  72. 72.
    Osorio, I., Frei, M.G.: Seizure Abatement with Single DC Pulses: Is Phase Resetting at Play? International Journal of Neural Systems 19(3), 149–156 (2009)CrossRefGoogle Scholar
  73. 73.
    Osterhage, H., Mormann, F., Wagner, T., Lehnertz, K.: Measuring the Directionality of Coupling: Phase Versus State Space Dynamics and Application to EEG Time Series. International Journal of Neural Systems 17(3), 139–148 (2007)CrossRefGoogle Scholar
  74. 74.
    Panakkat, A., Adeli, H.: Neural Network Models for Earthquake Magnitude Prediction using Multiple Seismicity Indicators. International Journal of Neural Systems 17(1), 13–33 (2007)CrossRefGoogle Scholar
  75. 75.
    Panakkat, A., Adeli, H.: Recurrent Neural Network for Approximate Earthquake Time and Location Prediction Using Multiple Seismicity Indicators. Computer-Aided Civil and Infrastructure Engineering 24(4), 280–292 (2009)CrossRefGoogle Scholar
  76. 76.
    Pande, A., Abdel-Aty, M.: A Computing Approach Using Probabilistic Neural Networks for Instantaneous Appraisal of Rear-End Crash Risk. Computer-Aided Civil and Infrastructure Engineering 23(7), 549–559 (2008)CrossRefGoogle Scholar
  77. 77.
    Park, H.S., Adeli, H.: A Neural Dynamics Model for Structural Optimization - Application to Plastic Design of Structures. Computers and Structures 57(3), 391–399 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Park, H.S., Adeli, H.: Distributed Neural Dynamics Algorithms for Optimization of Large Steel Structures. Journal of Structural Engineering, ASCE 123(7), 880–888 (1997)CrossRefGoogle Scholar
  79. 79.
    Pedrycz, W., Rai, R., Zurada, J.: Experience-Consistent Modeling for Radial Basis Function Neural Networks. International Journal of Neural Systems 18(4), 279–292 (2008)CrossRefGoogle Scholar
  80. 80.
    Perusich, K.: Using Fuzzy Cognitive Maps to Identify Multiple Causes in Troubleshooting Systems. Integrated Computer-Aided Engineering 15(2), 197–206 (2008)Google Scholar
  81. 81.
    Postnov, D.E., Ryazanova, L.S., Zhirin, R.A., Mosekilde, E., Sosnovtseva, O.V.: Noise Controlled Synchronization in Potassium Coupled Neural Networks. International Journal of Neural Systems 17(2), 105–113 (2007)CrossRefGoogle Scholar
  82. 82.
    Puscasu, G., Codres, B.: Nonlinear System Identification Based on Internal Recurrent Neural Networks. International Journal of Neural Systems 19(2), 115–125 (2009)CrossRefGoogle Scholar
  83. 83.
    Rao, V.S.H., Murthy, G.R.: Global Dynamics of a Class of Complex Valued Neural Networks. International Journal of Neural Systems 18(2), 165–171 (2008)CrossRefGoogle Scholar
  84. 84.
    Reuter, U., Moeller, B.: Artificial Neural Networks for Forecasting of Fuzzy Time Series. Computer-Aided Civil and Infrastructure Engineering 25(5), 363–374 (2010)CrossRefGoogle Scholar
  85. 85.
    Rigatos, G.G.: Adaptive fuzzy control with output feedback for H-infinity tracking of SISI nonlinear systems. International Journal of Neural Systems 18(4), 305–320 (2008)CrossRefGoogle Scholar
  86. 86.
    Rizzi, M., D’Aloia, M., Castagnolo, B.: Computer Aided Detection of Microcalcifications in Digital Mammograms Adopting a Wavelet Decomposition. Integrated Computer-Aided Engineering 16(2), 91–103 (2009)Google Scholar
  87. 87.
    Rokni, S., Fayek, A.R.: A Multi-Criteria Optimization Framework for Industrial Shop Scheduling Using Fuzzy Set Theory. Integrated Computer-Aided Engineering 17(3), 175–196 (2010)Google Scholar
  88. 88.
    Sabourin, C., Madani, K., Bruneau, O.: Autonomous Biped Gait Pattern based on Fuzzy-CMAC Neural Networks. Integrated Computer-Aided Engineering 14(2), 173–186 (2007)Google Scholar
  89. 89.
    Samant, A., Adeli, H.: Feature Extraction for Traffic Incident Detection using Wavelet Transform and Linear Discriminant Analysis. Computer-Aided Civil and Infrastructure Engineering 13(4), 241–250 (2000)CrossRefGoogle Scholar
  90. 90.
    Samant, A., Adeli, H.: Enhancing Neural Network Incident Detection Algorithms using Wavelets. Computer-Aided Civil and Infrastructure Engineering 16(4), 239–245 (2001)CrossRefGoogle Scholar
  91. 91.
    Sankari, Z., Adeli, H., Adeli, A.: Intrahemispheric, Interhemispheric and Distal EEG Coherence in Alzheimer’s Disease. Clinical Neurophysiology (2011), doi:10.1016/j.clinph.2010.09.008 (accepted for publication)Google Scholar
  92. 92.
    Senouci, A.B., Adeli, H.: Resource Scheduling using Neural Dynamics Model of Adeli and Park. Journal of Construction Engineering and Management, ASCE 127(1), 28–34 (2001)CrossRefGoogle Scholar
  93. 93.
    Shoeb, A., Guttag, J., Pang, T., Schachter, S.: Non-invasive Computerized System for Automatically Initiating Vagus Nerve Stimulation Following Patient-Specific Detection of Seizures or Epileptiform Discharges. International Journal of Neural Systems 19(3), 157–172 (2009)CrossRefGoogle Scholar
  94. 94.
    Stathopoulos, A., Dimitriou, L., Tsekeris, T.: Fuzzy Modeling Approach for Combined Forecasting of Urban Traffic Flow. Computer-Aided Civil and Infrastructure Engineering 23(7), 521–535 (2008)CrossRefGoogle Scholar
  95. 95.
    Tang, Y., Miao, Q., Fang, J.A.: Synchronization of stochastic delayed chaotic neural networks with Markovian switching and application in communication. International Journal of Neural Systems 19(1), 43–56 (2009)CrossRefGoogle Scholar
  96. 96.
    Umesha, P.K., Ravichandran, R., Sivasubramanian, K.: Crack detection and quantification in beams using wavelets. Computer-Aided Civil and Infrastructure Engineering 24(8), 593–607 (2009)CrossRefGoogle Scholar
  97. 97.
    Villaverde, I., Grana, M., d’Anjou, A.: Morphological Neural Networks and Vision Based Simultaneous Localization and Mapping. Integrated Computer-Aided Engineering 14(4), 355–363 (2007)Google Scholar
  98. 98.
    Villar, J.R., de la Cal, E., Sedano, J.: A Fuzzy Logic Based Efficient Energy Saving Approach for Domestic Heating Systems. Integrated Computer-Aided Engineering 16(2), 151–163 (2009)Google Scholar
  99. 99.
    Wang, X., Chen, Y., Bressler, S., Ding, M.: Evaluating Causal Relations Among Multiple Neurobiological Time Series: Blockwise Versus Pairwise Granger Causality. International Journal of Neural Systems 17(2), 71–78 (2007)CrossRefGoogle Scholar
  100. 100.
    Yazdani, A., Takada, T.: Wavelet-Based Generation of Energy and Spectrum Compatible Earthquake Time-Histories. Computer-Aided Civil and Infrastructure Engineering 24(8), 623–630 (2009)CrossRefGoogle Scholar
  101. 101.
    Zhou, Z., Adeli, H.: Time-frequency signal analysis of earthquake records using Mexican hat wavelets. Computer-Aided Civil and Infrastructure Engineering 18(5), 379–389 (2003)CrossRefGoogle Scholar
  102. 102.
    Zhou, Z., Adeli, H.: Wavelet Energy Spectrum for Time-Frequency Localization of Earthquake Energy. International Journal of Imaging Systems and Technology 13(2), 133–140 (2003)CrossRefGoogle Scholar
  103. 103.
    Zou, W., Chi, Z., Lo, K.C.: Improvement of Image Classification Using Wavelet Coefficients with Structured-based Neural Network. International Journal of Neural Systems 18(3), 195–205 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hojjat Adeli
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Department of Biomedical EngineeringThe Ohio State UniversityColumbusU.S.A.
  2. 2.Department of Biomedical InformaticsThe Ohio State UniversityColumbusU.S.A.
  3. 3.Department of Civil and Environmental Engineering and Geodetic scienceThe Ohio State UniversityColumbusU.S.A.
  4. 4.Department of Electrical and Computer EngineeringThe Ohio State UniversityColumbusU.S.A.
  5. 5.Department of Neurological SurgeryThe Ohio State UniversityColumbusU.S.A.
  6. 6.Department of NeuroscienceThe Ohio State UniversityColumbusU.S.A.

Personalised recommendations