Skip to main content

Differential Evolution Based Ascent Phase Trajectory Optimization for a Hypersonic Vehicle

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6466))

Included in the following conference series:

Abstract

In this paper, a new method for the numerical computation of optimal, or nearly optimal, solutions to aerospace trajectory problems is presented. Differential Evolution (DE), a powerful stochastic real-parameter optimization algorithm is used to optimize the ascent phase of a hypersonic vehicle. The vehicle has to undergo large changes in altitude and associated aerodynamic conditions. As a result, its aerodynamic characteristics, as well as its propulsion parameters, undergo drastic changes. Such trajectory optimization problems can be solved by converting it to a non-linear programming (NLP) problem. One of the issues in the NLP method is that it requires a fairly large number of grid points to arrive at an optimal solution. Differential Evolution based algorithm, proposed in this paper, is shown to perform equally well with lesser number of grid points. This is supported by extensive simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM Publications, Philadelphia (2001)

    MATH  Google Scholar 

  2. Gath, P.F., Calise, A.J.: Optimization of launch vehicle ascent trajectories with path constraints and coast arcs. Journal of Guidance, Control, and Dynamics 24, 296–304 (2001)

    Article  Google Scholar 

  3. Chenglong, H., Xin, C., Leni, W.: Optimizing RLV ascent trajectory using PSO algorithms. In: 2nd International Symposium on Systems and Control in Aerospace and Astronautics, December 2008, pp. 1–4 (2008)

    Google Scholar 

  4. Betts, J.T.: Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics 21, 193–207 (1998)

    Article  MATH  Google Scholar 

  5. Bryson, A.C., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control, Blaisdel (1969)

    Google Scholar 

  6. Anderson, J.D.: Introduction to Flight. McGraw-Hill, Singapore (2000)

    Google Scholar 

  7. Raghunathan, T., Ghose, D.: An online-implementable differential evolution tuned all-aspect guidance law, Control Engineering Practice (2010), doi:10.1016/j.conengprac.2010.05.13

    Google Scholar 

  8. Prasanna, H.M., Ghose, D., Bhat, M.S., Bhattacharyya, C., Umakant, J.: Ascent phase trajectory optimization for a hypersonic vehicle using nonlinear programming. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 548–557. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Storn, R., Price, K.: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Price, K., Storn, R., Lampinen, J.: Differential evolution – A Practical Approach to Global Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  11. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. on Evolutionary Computations, 398–417 (2009), doi:10.1109/TEVC.2008.927706

    Google Scholar 

  12. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing (in press), doi:10.1016/j.asoc.2010.04.024

    Google Scholar 

  13. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation 13(5), 945–958 (2009)

    Article  Google Scholar 

  14. Das, S., Suganthan, P.N.: Differential evolution – a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, doi:10.1109/TEVC.2010.2059031

    Google Scholar 

  15. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

    Article  Google Scholar 

  16. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood based mutation operator. IEEE Transactions on Evolutionary Computation 13(3), 526–553 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giri, R., Ghose, D. (2010). Differential Evolution Based Ascent Phase Trajectory Optimization for a Hypersonic Vehicle. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2010. Lecture Notes in Computer Science, vol 6466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17563-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17563-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17562-6

  • Online ISBN: 978-3-642-17563-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics