Skip to main content

Stimulation of the Retinal Network in Bionic Vision Devices: From Multi-Electrode Arrays to Pixelated Vision

  • Conference paper
Neural Information Processing. Theory and Algorithms (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6443))

Included in the following conference series:

Abstract

Bionic vision devices aiming to restore visual perception in the vision impaired rely on microelectrode arrays that can be implanted under the diseased retina. Arrays used today in first human trials are high density monopolar arrays comprising up to 1500 electrodes in a 3x3 mm a simple field calculations demonstrate that such high density arrays suffer from degradation of contrast between those 1500 stimulation sites when driven simultaneously. This effect can be described as electric crosstalk between the electrodes that strongly depends on the number of electrodes on such an array and proximity of electrodes to the target cells. The limit of spatial frequency of visual patterns that could be resolved by such arrays can be assessed to be 4.5; 1.2; and 0.7 cycles/mm, for an anticipated distance of target neurons of 20 (m, 200 (m, and 400 (m, respectively. This relates to a theoretically best achievable visual acuity of 2%, 0.6%, and 0.3% of normal vision, respectively (logMAR 1.7; 2.2; 2.5). These data suggest that novel strategies have to be pursued to either get closer to target structures, e.g. by the use of penetrating electrode arrays, or to create more confined stimulating fields within the retina, e.g. by the use of hexagonal arrays with multiple electrodes guarding one active electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Congdon, N., et al.: Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122, 477–485 (2004)

    Article  Google Scholar 

  2. Jones, B.W., Marc, R.E.: Retinal remodeling during retinal degeneration. Exp. Eye Res. 81, 123–137 (2005)

    Article  Google Scholar 

  3. Yanai, D., et al.: Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am. J. Ophthalmol. 143, 820–827 (2007)

    Article  Google Scholar 

  4. Besch, D., et al.: Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients. Br. J. Ophthalmol. 92, 1361–1368 (2008)

    Article  Google Scholar 

  5. Gerding, H., Benner, F.P., Taneri, S.: Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit. J. Neural Eng. 4, S38–S49 (2007)

    Article  Google Scholar 

  6. Winter, J.O., Cogan, S.F., Rizzo, J.F.: 3rd. Retinal prostheses: current challenges and future outlook. J. Biomater Sci. Polym. Ed. 18, 1031–1055 (2007)

    Article  Google Scholar 

  7. Hornig, R., et al.: A method and technical equipment for an acute human trial to evaluate retinal implant technology. J. Neural Eng. 2, S129–S134 (2005)

    Article  Google Scholar 

  8. Walter, P., et al.: Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis. Sci. 46, 1780–1785 (2005)

    Article  Google Scholar 

  9. DeMarco Jr., P.J., et al.: Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. Invest Ophthalmol Vis. Sci. 48, 916–926 (2007)

    Article  Google Scholar 

  10. Zrenner, E., et al.: Subretinal microelectrode arrays implanted into blind retinitis pigmentosa patients allow recognition of letters and direction of thin stripes. In: IFMBE Proceedings World Congress on Medical Physics and Biomedical Engineering, vol. 25, pp. 444–447 (2009)

    Google Scholar 

  11. Wilke, R., et al.: Visual acuity determined by landolt c test in a blind patient provided with a subretinal electronic implant. Invest. Ophthalmol. Vis. Sci. 2009 : E-Abstract (2009)

    Google Scholar 

  12. Wilke, R., Zrenner, E.: Clinical results: Thresholds and visual sensations elicited by subretinal implants in 8 patients. In: The Eye and the Chip World Congress on Artificial Vision (Detroit, 2008) (2008)

    Google Scholar 

  13. Zrenner, E.: Will retinal implants restore vision? Science 295, 1022–1025 (2002)

    Article  Google Scholar 

  14. Dommel, N.B., et al.: A CMOS retinal neurostimulator capable of focussed, simultaneous stimulation. J. Neural Eng. 6, 35006 (2009)

    Article  Google Scholar 

  15. Benav, H., Wilke, R., Stett, A., Zrenner, E.: Modeling advantages of subretinal microphotodiode-arrays utilizing sequential electrode activation. Invest. Ophthalmol. Vis. Sci. 2009 : E-Abstract (2009)

    Google Scholar 

  16. Addi, M.M., et al.: Charge recovery during concurrent stimulation for a vision prosthesis. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, pp. 1797–1800 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilke, R.G.H., Moghaddam, G.K., Dokos, S., Suaning, G., Lovell, N.H. (2010). Stimulation of the Retinal Network in Bionic Vision Devices: From Multi-Electrode Arrays to Pixelated Vision. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17537-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17536-7

  • Online ISBN: 978-3-642-17537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics