Skip to main content

Functional Realization: Electrostatic Transducers

  • Chapter
  • First Online:
Mechatronic Systems Design

Abstract

Electrostatics represents the most ancient known manifestation of electricity, but it has only been since the end of the 20th century that this principle has achieved true engineering significance as a key component of microelectromechanical systems (MEMS). Due to the physically-constrained, micro-scale force generation available from this principle, its many possible sensor and actuator applications can also only be realized at the micro- scale. Electrostatic transducers are particularly attractive due to the relative ease of their construction. All they require is some conductive materials for the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Bencze, W. J., M. E. Eglington, R. W. Brumley and S. Buchman (2007). “Precision electrostatic suspension system for the Gravity Probe B relativity mission’s science gyroscopes.” Advances in Space Research 39(2): 224–229.

    Article  Google Scholar 

  • Bochobza-Degani, O., D. Elata and Y. Nemirovsky (2003). “A general relation between the ranges of stability of electrostatic actuators under charge or voltage control.” Appl. Phys. Lett. 82: 302–304.

    Article  Google Scholar 

  • Borovic, B., F. L. Lewis, A. Q. Liu, E. S. Kolesar, et al. (2006). “The lateral instability problem in electrostatic comb drive actuators: modeling and feedback control.” Journal of Micromechanics and Microengineering(7): 1233.

    Google Scholar 

  • Chan, E. K. and R. W. Dutton (2000). “Electrostatic micromechanical actuator with extended range of travel.” Microelectromechanical Systems, Journal of 9(3): 321–328.

    Article  Google Scholar 

  • Chen, C. and C. Lee (2004). “Design and modeling for comb drive actuator with enlarged static displacement.” Sensors and Actuators A: Physical 115(2–3): 530–539.

    Article  Google Scholar 

  • Damrongsak, B., M. Kraft, S. Rajgopal and M. Mehregany (2008). “Design and fabrication of a micromachined electrostatically suspended gyroscope.” Proceedings of the I MECH E Part C Journal of Mechanical Engineering Science 222: 53–63.

    Google Scholar 

  • Elata, D. (2006). Modeling the Electromechanical Response of Electrostatic Actuators. MEMS/NEMS Handbook, Techniques and Applications. C. T. Leondes. Springer. 4: 93–119.

    Google Scholar 

  • Han, F., Z. Gao, D. Li and Y. Wang (2005). “Nonlinear compensation of active electrostatic bearings supporting a spherical rotor.” Sensors and Actuators A: Physical 119(1): 177–186.

    Article  Google Scholar 

  • Han, F., Q. Wu and Z. Gao (2006). “Initial levitation of an electrostatic bearing system without bias.” Sensors and Actuators A: Physical 130–131: 513–522.

    Google Scholar 

  • Horsley, D. A., R. Horowitz and A. P. Pisano (1998). “Microfabricated electrostatic actuators for hard disk drives.” Mechatronics, IEEE/ASME Transactions on 3(3): 175–183.

    Article  Google Scholar 

  • Horsley, D. A., N. Wongkomet, R. Horowitz and A. P. Pisano (1999). “Precision positioning using a microfabricated electrostatic actuator.” Magnetics, IEEE Transactions on 35(2): 993–999.

    Article  Google Scholar 

  • Huang, W. and G. Lu (2004). “Analysis of lateral instability of in-plane comb drive MEMS actuators based on a two-dimensional model.” Sensors and Actuators A: Physical 113(1): 78–85.

    Article  Google Scholar 

  • Imamura, T., T. Koshikawa and M. Katayama (1996). Transverse mode electrostatic microactuator for MEMS-based HDD slider. Micro Electro Mechanical Systems, 1996, MEMS ’96, Proceedings. ’An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems’. IEEE, The Ninth Annual International Workshop on. pp.216–221.

    Google Scholar 

  • Jackson, J. D. (1999). Classical Electrodynamics, Third Edition. John Wiley and Sons, Inc.

    Google Scholar 

  • Lee, K. B. and Y. H. Cho (1998). “A triangular electrostatic comb array for micromechanical resonant frequency tuning.” Sensors and Actuators A: Physical 70(1–2): 112–117.

    Article  Google Scholar 

  • Legtenberg, R., A. W. Groeneveld and M. Elwenspoek (1996). “Combdrive actuators for large displacements.” Journal of Micromechanics and Microengineering 6: 320–329.

    Article  Google Scholar 

  • Seeger, J. I. and B. E. Boser (1999). Dynamics and control of parallel-plate actuators beyond the electrostatic instability. Tech. Dig. 10th Intl. Conf. Solid-State Sensors and Actuators (Transducers ’99), Sendai, Japan. pp.pp. 474–477.

    Google Scholar 

  • Seeger, J. I. and B. E. Boser (2003). “Charge control of parallel-plate, electrostatic actuators and the tip-in instability.” Microelectromechanical Systems, Journal of 12(5): 656–671.

    Article  Google Scholar 

  • Seeger, J. I. and S. B. Crary (1997). Stabilization of electrostatically actuated mechanical devices. Solid State Sensors and Actuators, 1997. TRANSDUCERS ’97 Chicago., 1997 International Conference on. pp.1133–1136 vol.1132.

    Google Scholar 

  • Senturia, S. D. (2001). Microsystem Design. Kluwer Academic Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Janschek .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 SpringerVerlag Berlin Heidelberg

About this chapter

Cite this chapter

Janschek, K., Richmond, K. (2012). Functional Realization: Electrostatic Transducers. In: Mechatronic Systems Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17531-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17531-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17530-5

  • Online ISBN: 978-3-642-17531-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics