Skip to main content

Elements of Modeling

  • Chapter
  • First Online:
Mechatronic Systems Design

Abstract

Abstract dynamic models play a central role in the design process for mechatronic systems. The dynamic behaviors and desired (or undesired) interactions of system components fundamentally define favorable (and unfavorable) product properties. The primary challenge in modeling mechatronic systems lies in their multi-domain nature. To the extent that heterogeneous physical components are interconnected in a homogeneously operating functional unit, models of the components must naturally also be expressed in a domain-independent abstract structure. Naturally, when creating an abstract model, relevant physical and dynamic properties must be correctly depicted, and the assignment of real component properties to model parameters should remain sufficiently transparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Angermann, A., M. Beuschel, M. Rau and U. Wohlfarth (2005). Matlab-Simulink-Stateflow. Grundlagen, Toolboxen, Beispiele. München. Oldenbourg Wissenschaftsverlag.

    Google Scholar 

  • Brenan, K. E., S. L. Campbell and L. R. Petzold (1996). Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM.

    Google Scholar 

  • Buss, M. (2002). Methoden zur Regelung Hybrider Dynamischer Systeme. Fortschritt-Berichte, VDI Reihe 8, Nr. 970.

    Google Scholar 

  • Cellier, F. E. (1991). Continuous System Modeling. Springer.

    Google Scholar 

  • Cellier, F. E. and H. Elmqvist (1993). “Automated formula manipulation supports object-oriented continuous-system modelling.” IEEE Control System Magazine 13(2): 28-38.

    Article  Google Scholar 

  • Cellier, F. E. and E. Kofman (2006). Continuous System Simulation. Berlin. Springer.

    MATH  Google Scholar 

  • Cervera, J., A. J. Van Der Schaft and A. Banos (2007). “Interconnection of port-Hamiltonian systems and composition of Dirac structures.” Automatica 43(2): 212-225.

    Article  MathSciNet  MATH  Google Scholar 

  • Conrad, M., I. Fey and S. Sadeghipour (2005). “Systematic Model-Based Testing of Embedded Automotive Software” Electronic Notes in Theoretical Computer Science 111: 13-26

    Article  Google Scholar 

  • Damic, V. and J. Montgomery (2003). Mechatronics by Bond Graphs. Springer.

    Google Scholar 

  • Duindam, V., A. Macchelli, S. Stramigioli and H. Bruyninckx, Eds. (2009). Modeling and Control of Complex Physical Systems – The Port-Hamiltonian Approach, Springer.

    Google Scholar 

  • Engell, S., G. Frehse and E. Schnieder, Eds. (2002). Modelling, analysis, and design of hybrid systems. Lecture notes in control and information sciences, Springer.

    Google Scholar 

  • Fritzson, P. (2011). Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica. John Wiley & Sons Inc.

    Google Scholar 

  • Fuchshumer, S., G. Grabmair, K. Schlacher and G. Keintzel (2003). “Automatisierungstechnik in der Mechatronik — zwei Beispiele aus der Stahlindustrie” e&I 120(5): 164-171.

    Google Scholar 

  • Geitner, G. H. (2006). Power Flow Diagrams Using a Bond Graph Library under Simulink. Proc. of 32nd Annual Conference on IEEE Industrial Electronics, IECON 2006-. pp.5282-5288.

    Google Scholar 

  • Geitner, G. H. (2008). Bondgraphen-Modelle für ausgewählte mechatronische Anschauungsbeispiele. Persönliche Kommunikation, Elektro-technisches Institut, Technische Universität Dresden.

    Google Scholar 

  • Goldstein, H., C. P. Poole and J. L. Safko (2001). Classical Mechanics. Addison Wesley.

    Google Scholar 

  • Harel, D. (1987). “Statecharts - A Visual Formalism for Complex Systems.” Science of Computer Programming 8: 231-274.

    Article  MathSciNet  MATH  Google Scholar 

  • Hatley, D. J. and I. A. Pirbhai (1987). Strategies for Real-Time System Specification. New York, NY. Dorset House.

    Google Scholar 

  • Hatley, D. J. and I. A. Pirbhai (1993). Strategien für die Echtzeitpro-grammierung. München, Wien. Hanser.

    Google Scholar 

  • IEEE (1997). IEEE Trial-Use Recommended Practice for Distributed Interactive Simulation -Verification, Validation, and Accreditation. IEEE Std 1278.4-1997. I. C. Society.

    Google Scholar 

  • Isidori, A. (2006). Nonlinear Control Systems. Springer.

    Google Scholar 

  • Karnopp, D. C., D. L. Margolis and R. C. Rosenberg (2006). System dynamics: modeling and simulation of mechatronic systems. John Wiley & Sons, Inc.

    Google Scholar 

  • Koycheva, E. and K. Janschek (2007). Performance analysis of system models with UML and Generalized Nets. EUROSIM 2007, 6th EUROSIM Congress on Modelling and Simulation, Ljubljana, Slovenia

    Google Scholar 

  • Kugi, A. and K. Schlacher (2001). “Dissipativit&ts- und passivitätsbasierte Regelung nichtlinearer mechatronischer Systeme.” e&i 120(1): 40-48.

    MathSciNet  Google Scholar 

  • Kugi, A. and K. Schlacher (2002). “Analyse und Synthese nichtlinearer dissipativer Systeme: Ein Überblick (Teil 2).” at - Automatisierungs-technik 50(3): 103-111.

    Article  Google Scholar 

  • Lenk, A., R. G. Ballas, R. Werthschützky and G. Pfeifer (2011). Electromechanical Systems in Microtechnology and Mechatronics. Springer.

    Google Scholar 

  • Litz, L. (2005). Grundlagen der Automatisierungstechnik. Oldenbourg Verlag München Wien.

    Google Scholar 

  • Lunze, J. (2002). What Is a Hybrid System? Modelling, Analysis, and Design of Hybrid Systems. S. Engell, G. Frehse and E. Schnieder. Springer: 3-14.

    Google Scholar 

  • Maschke, B. M. and A. J. Van Der Schaft (1992). Port-controlled Hamiltonian systems: Modelling origins and system theoretic properties. IFAC Symposium on Nonlinear Control Systems Design (NOLCOS) 1992, Bordeaux, France. pp.359-365.

    Google Scholar 

  • Mattsson, S. E. and G. Söderlind (1993). “Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives.” SIAM Journal on Scientific Computing 14(677-692).

    Article  MathSciNet  MATH  Google Scholar 

  • Nenninger, G., M. Schnabel and V. Krebs (1999). “Modellierung, Simulation und Analyse hybrider dynamischer Systeme mit Netz-Zustands-Modellen.” at-Automatisierungstechnik 47(3): 118-126.

    Google Scholar 

  • Oestereich, B. (2006). Analyse und Design mit der UML 2.1 – Objektorientierte Softwareentwicklung. Oldenbourg Wissenschaftsverlag.

    Google Scholar 

  • Ogata, K. (1992). System Dynamics. Prentice Hall.

    Google Scholar 

  • Ogata, K. (2010). Modern Control Engineering. Prentice Hall.

    Google Scholar 

  • Ortega, R., A. J. Van Der Schaft, B. M. Maschke and G. Escobar (2002). “Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems.” automatica 38: 585-596.

    Article  MATH  Google Scholar 

  • Otter, M. (1999). “Objektorientierte Modellierung Physikalischer Systeme, Teil 4.” at-Automatisierungstechnik 47(4): A13-A16.

    Google Scholar 

  • Otter, M. and B. Bachmann (1999). “Objektorientierte Modellierung Physikalischer Systeme, Teil 5.” at-Automatisierungstechnik 47(5): A17-A20.

    Google Scholar 

  • Otter, M. and B. Bachmann (1999). “Objektorientierte Modellierung Physikalischer Systeme, Teil 6.” at-Automatisierungstechnik 47(6): A21-A24.

    Google Scholar 

  • Pantelides, C. C. (1988). “The consistent initialization of differentialalgebraic systems.” SIAM Journal of Scientific and Statistical Computing 9: 213-231.

    Article  MathSciNet  MATH  Google Scholar 

  • Paynter, H. M. (1961). Analysis and Design of Engineering Systems. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Rabiner, L. R. and B. Gold (1975). Theory and Application of Digital Signal Processing. Englewood Cliffs, New Jersey. Prentice Hall.

    Google Scholar 

  • Rau, A. (2002). Model-Based Development of Embedded Automotive Control Systems. Dissertation, Universität Tübingen.

    Google Scholar 

  • Reinschke, K. (2006). Lineare Regelungs- und Steuerungstheorie. Springer.

    Google Scholar 

  • Reinschke, K. and P. Schwarz (1976). Verfahren zur rechnergestützten Analyse linearer Netzwerke. Akademie Verlag Berlin.

    MATH  Google Scholar 

  • Schnabel, M., G. Nenninger and V. Krebs (1999). “Konvertierung sicherer Petri-Netze in Statecharts.” at - Automatisierungstechnik 47(12): 571-580.

    Google Scholar 

  • Schnieder, E. (1999). Methoden der Automatisierung. Beschreibungsmittel, Modellkonzepte und Werkzeuge für Automatisierungssysteme. Braunschweig, Wiesbaden. Vieweg.

    Google Scholar 

  • Schultz, D. G. and J. L. Melsa (1967). State functions and linear control systems. McGraw-Hill Book Company.

    Google Scholar 

  • Schwarz, P., C. Clauß, J. Haase and A. Schneider (2001). VHDL-AMS und Modelica - ein Vergleich zweier Modellierungssprachen. 15. Symposium Simulationstechnik ASIM 2001, Paderborn. pp.85-94.

    Google Scholar 

  • Schwarz, P. and T. Zaiczek (2008). Torbasierte Rechnermodelle für ausgewählte mechatronische Anschauungsbeispiele. Persönliche Kommunikation, Fraunhofer Institut Integrierte Schaltungen, Institutsteil Entwurfsautomatisierung, Dresden.

    Google Scholar 

  • Short, M. and M. J. Pont (2008). “Assessment of high-integrity embedded automotive control systems using hardware in the loop simulation.” Journal of Systems and Software 81(7): 1163-1183.

    Article  Google Scholar 

  • Siciliano, B., L. Sciavicco, L. Villani and G. Oriolo (2009). Robotics: Modelling, Planning and Control. Springer.

    Google Scholar 

  • Thomas, R. E., A. J. Rosa and G. J. Toussaint (2009). The Analysis and Design of Linear Circuits. John Wiley and Sons, Inc.

    Google Scholar 

  • Tiller, M. M. (2001). Introduction to Physical Modeling with Modelica. Kluwer Academic Publishers.

    Google Scholar 

  • Van Der Schaft, A. J. and B. M. Maschke (1995). “The Hamiltonian formulation of energy conserving physical systems with external ports.” Archiv für Elektronik und Übertragungstechnik 49: 362-371.

    Google Scholar 

  • Van Der Schaft, A. J. and B. M. Maschke (2002). “Hamiltonian representation of distributed parameter systems with boundary energy flow.” Journal of Geometry and Physics 42: 166-194.

    Article  MathSciNet  MATH  Google Scholar 

  • Vogel-Heuser, B. (2003). Systems Software Engineering. München. Oldenbourg.

    MATH  Google Scholar 

  • Wellstead, P. E. (1979). Introduction to Physical System Modelling. London. Academic Press Ltd.

    Google Scholar 

  • Yourdon, E. (1989). Modern Structured Analysis. Yourdon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Janschek .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 SpringerVerlag Berlin Heidelberg

About this chapter

Cite this chapter

Janschek, K., Richmond, K. (2012). Elements of Modeling. In: Mechatronic Systems Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17531-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17531-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17530-5

  • Online ISBN: 978-3-642-17531-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics