Skip to main content

Approximating Minimum Bending Energy Path in a Simple Corridor

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6506))

Included in the following conference series:

Abstract

In this paper, we consider the problem of computing a minimum bending energy path (or MinBEP) in a simple corridor. Given a simple 2D corridor C bounded by straight line segments and arcs of radius 2r, the MinBEP problem is to compute a path P inside C and crossing two pre-specified points s and t located at each end of C so that the bending energy of P is minimized. For this problem, we first show how to lower bound the bending energy of an optimal curve with bounded curvature, and then use this lower bound to design a (1 + ε)-approximation algorithm for this restricted version of the MinBEP problem. Our algorithm is based on a number of interesting geometric observations and approximation techniques on smooth curves, and can be easily implemented for practical purpose. It is the first algorithm with a guaranteed performance ratio for the MinBEP problem.

The research of this work was supported in part by National Science Foundation (NSF) through a CAREER award CCF-0546509 and a grant IIS-0713489.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubins, L.: On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents. American Journal of Mathematics 79, 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Euler, L.: Methodus inveniendi lineas curvas maximi minimive propriatate gaudentes, sive solutio problematis isoperimetrici lattisimo sensu accepti. Bousquet, Lausannae et Genevae, E65A. O.O. SER. I, vol. 24 (1744)

    Google Scholar 

  3. Freedman, M., He, Z., Wang, Z.: On the Mobius Energy of Knots and Unknots. Annals of Mathematics 139(1), 1–50 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear Time Algorithm for Visibility and Shortest Path Problems Inside Simple Polygons. In: Proceedings of the Second Annual ACM-SIAM Symposium on Computational Geometry (1986)

    Google Scholar 

  5. Heekeren, R., Faas, F., Vliet, L.: Finding the Minimum-Cost Path Without Cutting Corners. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522. Springer, Heidelberg (2007)

    Google Scholar 

  6. Ivey, T., Singer, D.: Knot Types, Homotopies and Stability of Closed Elastic Rods. Proceedings of the London Mathematical Society 79, 429–450 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Langer, J., Singer, D.: Knotted Elastic Curves in R 3. Journal of London Math. Society 30(2), 512–520 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. von der Mosel, H.: Minimizing the Elastic Energy of Knots. Journal of Asymptotic Analysis 18(1-2), 49–65 (1998)

    MathSciNet  MATH  Google Scholar 

  9. O’Hara, J.: Energy of a Knot. Topology 30, 241–247 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pressley, A.: Elementary Differential Geometry. Springer, London (2001)

    Book  MATH  Google Scholar 

  11. Sack, J.R., Urrutia, J.: Handbook of computational geometry, pp. 854–855. North-Holland Publishing Co., Amsterdam (2000)

    MATH  Google Scholar 

  12. Schafer, S., Singh, V., Hoffmann, K., Noël, P., Xu, J.: Planning image-guided endovascular interventions: guidewire simulation using shortest path algorithms. In: Proceedings of the SPIE, vol. 6509 (2007)

    Google Scholar 

  13. Schafer, S., Singh, V., Noël, P.B., Xu, J., Walczak, A., Hoffmann, K.R.: Real Time Endovascular Guidewire Position Simulation using Shortest Path Algorithms. International Journal of Computer Aided Radiaology and Surgery (IJCARS) 4, 597–608 (2009)

    Google Scholar 

  14. Thorpe, J.: Elementary Topic in Differential Geometry. Springer, Heidelberg (1979)

    Book  MATH  Google Scholar 

  15. Chazelle, B., Guibas, L.J.: Visibility and intersection problems in plane geometry. Discrete and Computational Geometry 4(6), 551–581 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, J., Xu, L., Xie, Y. (2010). Approximating Minimum Bending Energy Path in a Simple Corridor. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17517-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17517-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17516-9

  • Online ISBN: 978-3-642-17517-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics