Skip to main content

Spanning Ratio and Maximum Detour of Rectilinear Paths in the L 1 Plane

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6507))

Included in the following conference series:

  • 729 Accesses

Abstract

The spanning ratio and maximum detour of a graph G embedded in a metric space measure how well G approximates the minimum complete graph containing G and metric space, respectively. In this paper we show that computing the spanning ratio of a rectilinear path P in L 1 space has a lower bound of Ω(n logn) in the algebraic computation tree model and describe a deterministic O(n log2 n) time algorithm. On the other hand, we give a deterministic O(n log2 n) time algorithm for computing the maximum detour of a rectilinear path P in L 1 space and obtain an O(n) time algorithm when P is a monotone rectilinear path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss, M.: Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D and 3D. Discrete Comput. Geom. 39(1-3), 17–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, P.K., Klein, R., Knauer, C., Sharir, M.: Computing the Detour of Polygonal Curves, TRB 02-03, Freie Universität Berlin, Fachbereich Mathematik und Informatik (2002)

    Google Scholar 

  3. Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized Self-approaching Curves. Discrete Appl. Math. 109, 3–24 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alstrup, S., Holm, J.: Improved Algorithms for Finding Level Ancestors in Dynamic Trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 73–84. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A Fast Algorithm for Approximating the Detour of a Polygonal Chain. Comput. Geom. Theory Appl. 27, 123–134 (2004)

    Article  MATH  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill (2001)

    Google Scholar 

  7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Second Revised Edition, pp. 105–110. Springer, Heidelberg (2000), Section 5.3: Range Trees

    Book  MATH  Google Scholar 

  8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  10. Grüne, A.: Umwege in Polygonen. Diploma Thesis, Institute of Computer Science I, Bonn (2002)

    Google Scholar 

  11. Gudmundsson, J., Knauer, C.: Dilation and Detours in Geometric Networks. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithm and Metaheuristics. Chapman & Hall/CRC (2007), Section 52

    Google Scholar 

  12. Hershberger, J., Suri, S.: Offline maintenance of planar configurations. J. Algorithms 21, 453–475 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Philos. Soc. 125, 441–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Langerman, S., Morin, P., Soss, M.: Computing the Maximum Detour and Spanning Ratio of Planar Paths, Trees and Cycles. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 250–261. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Narasimhan, G., Smid, M.: Approximating the Stretch Factor of Euclidean Graphs. SIAM J. Comput. 30(3), 978–989 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Preparata, F.P.: An Optimal Real Time Algorithm for Planar Convex Hulls. Comm. ACM 22, 402–405 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introducation. Springer, New York (1985)

    Book  MATH  Google Scholar 

  18. Rote, G.: Curves with increasing chords. Math. Proc. Camb. Philos. Soc. 115, 1–12 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wulff-Nilsen, C.: Computing the Maximum Detour of a Plane Graph in Subquadratic Time. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 740–751. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Yao, A.C.-C.: Lower Bounds for Algebraic Computation Trees of Functions with Finite Domains. SIAM Journal on Computing 20(4), 655–668 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grüne, A. et al. (2010). Spanning Ratio and Maximum Detour of Rectilinear Paths in the L 1 Plane. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17514-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17514-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17513-8

  • Online ISBN: 978-3-642-17514-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics