Constraint-Based Abstract Semantics for Temporal Logic: A Direct Approach to Design and Implementation

  • Gourinath Banda
  • John P. Gallagher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6355)


Abstract interpretation provides a practical approach to verifying properties of infinite-state systems. We apply the framework of abstract interpretation to derive an abstract semantic function for the modal μ-calculus, which is the basis for abstract model checking. The abstract semantic function is constructed directly from the standard concrete semantics together with a Galois connection between the concrete state-space and an abstract domain. There is no need for mixed or modal transition systems to abstract arbitrary temporal properties, as in previous work in the area of abstract model checking. Using the modal μ-calculus to implement CTL, the abstract semantics gives an over-approximation of the set of states in which an arbitrary CTL formula holds. Then we show that this leads directly to an effective implementation of an abstract model checking algorithm for CTL using abstract domains based on linear constraints. The implementation of the abstract semantic function makes use of an SMT solver. We describe an implemented system for proving properties of linear hybrid automata and give some experimental results.


Model Check Temporal Logic Abstract Interpretation Semantic Function Kripke Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. In: Proceedings of the IEEE, pp. 971–984 (2000)Google Scholar
  2. 2.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Banda, G., Gallagher, J.P.: Analysis of Linear Hybrid Systems in CLP. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 55–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Banda, G., Gallagher, J.P.: Constraint-based abstraction of a model checker for infinite state systems. In: Wolf, A., Geske, U. (eds.) Proceedings of the 23rd Workshop on (Constraint) Logic Programming, University of Potsdam (online Technical Report series) (2009)Google Scholar
  5. 5.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Benoy, F., King, A.: Inferring argument size relationships with CLP(R). In: Gallagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 204–223. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.R.: An improved algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci. 178(1-2), 237–255 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brzoska, C.: Temporal logic programming in dense time. In: ILPS, pp. 303–317. MIT Press, Cambridge (1995)Google Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. In: POPL, pp. 342–354 (1992)Google Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  12. 12.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles, pp. 238–252 (1977)Google Scholar
  13. 13.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL 1979, pp. 269–282. ACM Press, New York (1979)Google Scholar
  14. 14.
    Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Autom. Softw. Eng. 6(1), 69–95 (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Cousot, P., Cousot, R.: Temporal abstract interpretation. In: POPL 2000, pp. 12–25 (2000)Google Scholar
  16. 16.
    Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Trans. Program. Lang. Syst. 19(2), 253–291 (1997)CrossRefGoogle Scholar
  17. 17.
    Delzanno, G., Podelski, A.: Model checking in CLP. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Du, X., Ramakrishnan, C.R., Smolka, S.A.: Real-time verification techniques for untimed systems. Electr. Notes Theor. Comput. Sci. 39(3) (2000)Google Scholar
  19. 19.
    Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Emerson, E.A.: Model checking and the mu-calculus. In: Immerman, N., Kolaitis, P.G. (eds.) Descriptive Complexity and Finite Models. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 185–214. American Mathematical Society, Providence (1996)CrossRefGoogle Scholar
  21. 21.
    Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite-state systems by specializing constraint logic programs. In: Leuschel, M., Podelski, A., Ramakrishnan, C., Ultes-Nitsche, U. (eds.) Proceedings of the Second International Workshop on Verification and Computational Logic (VCL 2001), pp. 85–96. Tech. Report DSSE-TR-2001-3, University of Southampton (2001)Google Scholar
  22. 22.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Ganty, P.: The Fixpoint Checking Problem: An Abstraction Refinement Perspective. PhD thesis, Université Libre de Bruxelles, Département d’Informatique (2007)Google Scholar
  24. 24.
    Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Gupta, G., Pontelli, E.: A constraint-based approach for specification and verification of real-time systems. In: IEEE Real-Time Systems Symposium, pp. 230–239 (1997)Google Scholar
  27. 27.
    Halbwachs, N., Proy, Y.E., Raymound, P.: Verification of linear hybrid systems by means of convex approximations. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 223–237. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  28. 28.
    Henriksen, K.S., Banda, G., Gallagher, J.P.: Experiments with a convex polyhedral analysis tool for logic programs. In: Workshop on Logic Programming Environments, Porto (2007)Google Scholar
  29. 29.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  30. 30.
    Huth, M.R.A., Ryan, M.D.: Logic in Computer Science: Modelling and reasoning about systems. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  31. 31.
    Jaffar, J., Santosa, A.E., Voicu, R.: A CLP proof method for timed automata. In: Anderson, J., Sztipanovits, J. (eds.) The 25th IEEE International Real-Time Systems Symposium, pp. 175–186. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  32. 32.
    Kelb, P.: Model checking and abstraction: A framework preserving both truth and failure information. Technical report, Carl yon Ossietzky Univ. of Oldenburg, Oldenburg, Germany (1994)Google Scholar
  33. 33.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings, Third Annual Symposium on Logic in Computer Science, Edinburgh, Scotland, UK, July 5-8, pp. 203–210. IEEE Computer Society, Los Alamitos (1988)CrossRefGoogle Scholar
  34. 34.
    Leuschel, M., Massart, T.: Infinite state model checking by abstract interpretation and program specialisation. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 63–82. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  35. 35.
    Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. Formal Methods in System Design 6(1), 11–44 (1995)CrossRefzbMATHGoogle Scholar
  36. 36.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  37. 37.
    Nilsson, U., Lübcke, J.: Constraint logic programming for local and symbolic model-checking. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 384–398. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  38. 38.
    Pemmasani, G., Ramakrishnan, C.R., Ramakrishnan, I.V.: Efficient real-time model checking using tabled logic programming and constraints. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 100–114. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  39. 39.
    Peralta, J.C., Gallagher, J.P.: Convex hull abstractions in specialization of CLP programs. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 90–108. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  40. 40.
    Saïdi, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 443–454. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  41. 41.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–309 (1955)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gourinath Banda
    • 1
  • John P. Gallagher
    • 1
    • 2
  1. 1.Roskilde UniversityDenmark
  2. 2.IMDEA SoftwareMadridSpain

Personalised recommendations