Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6355))

Abstract

We study strategy improvement algorithms for mean-payoff and parity games. We describe a structural property of these games, and we show that these structures can affect the behaviour of strategy improvement. We show how awareness of these structures can be used to accelerate strategy improvement algorithms. We call our algorithms non-oblivious because they remember properties of the game that they have discovered in previous iterations. We show that non-oblivious strategy improvement algorithms perform well on examples that are known to be hard for oblivious strategy improvement. Hence, we argue that previous strategy improvement algorithms fail because they ignore the structural properties of the game that they are solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 663–674. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Applied Mathematics 155(2), 210–229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Condon, A.: On algorithms for simple stochastic games. In: Cai, J.-Y. (ed.) Advances in Computational Complexity Theory. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 51–73. American Mathematical Society, Providence (1993)

    Chapter  Google Scholar 

  4. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  5. Friedmann, O.: A super-polynomial lower bound for the parity game strategy improvement algorithm as we know it. In: Logic in Computer Science (LICS). IEEE, Los Alamitos (2009)

    Google Scholar 

  6. Friedmann, O.: A super-polynomial lower bound for the parity game strategy improvement algorithm as we know it (January 2009) (preprint)

    Google Scholar 

  7. Howard, R.: Dynamic Programming and Markov Processes. Technology Press and Wiley (1960)

    Google Scholar 

  8. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pp. 117–123. ACM/SIAM (2006)

    Google Scholar 

  9. Khachiyan, L., Gurvich, V., Zhao, J.: Extending dijkstras algorithm to maximize the shortest path by node-wise limited arc interdiction. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 221–234. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Liggett, T.M., Lippman, S.A.: Stochastic games with perfect information and time average payoff. SIAM Review 11(4), 604–607 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mansour, Y., Singh, S.P.: On the complexity of policy iteration. In: Laskey, K.B., Prade, H. (eds.) UAI 1999: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 401–408. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  12. Puri, A.: Theory of Hybrid Systems and Discrete Event Systems. PhD thesis, University of California, Berkeley (1995)

    Google Scholar 

  13. Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 369–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Stirling, C.: Local model checking games (extended abstract). In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  15. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games (Extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158(1-2), 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fearnley, J. (2010). Non-oblivious Strategy Improvement. In: Clarke, E.M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science(), vol 6355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17511-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17511-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17510-7

  • Online ISBN: 978-3-642-17511-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics