Skip to main content

Model-Based Engineering Applied to the Interpretation of the Human Genome

  • Chapter
The Evolution of Conceptual Modeling

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6520))

Abstract

In modern software engineering it is widely accepted that the use of Conceptual Modeling techniques provides an accurate description of the problem domain. Applying these techniques before developing their associated software representation (implementations) allows for the development of high quality software systems. The application of these ideas to new, challenging domains –as the one provided by the modern Genomics- is a fascinating task. In particular, this chapter shows how the complexity of human genome interpretation can be faced from a pure conceptual modeling perspective to describe and understand it more clearly and precisely. With that, we pretend to show that a conceptual schema of the human genome will allow us to better understand the functional and structural relations that exist between the genes and the DNA translation and transcription processes, intended to explain the protein synthesis. Genome, genes, alleles, genic mutations... all these concepts should be properly specified through the creation of the corresponding Conceptual Schema, and the result of these efforts is presented here. First, an initial conceptual schema is suggested. It includes a first version of the basic genomic notions intended to define those basic concepts that characterize the description of the Human Genome. A set of challenging concepts is detected: they refer to representations that require a more detailed specification. As the knowledge about the domain increases, the model evolution is properly introduced and justified, with the final intention of obtaining a stable, final version for the Conceptual Schema of the Human Genome. During this process, the more critical concepts are outlined, and the final decision adopted to model them adequately is discussed. Having such a Conceptual Schema enables the creation of a corresponding data base. This database could include the required contents needed to exploit bio-genomic information in the structured and precise way historically provided by the Database domains. That strategy is far from the current biological data source ontologies that are heterogeneous, imprecise and too often even inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olivé, A.: Conceptual Modelling of Information Systems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Falkenberg, E., Hesse, W., Lindgreken, W., Nilsson, E., Han, J., Rolland, C., Stamper, R., Van Assche, F., Verrijn-Stuart, A., Voss, K.: A Framework Of Information System Concepts. In: IFIP (1998)

    Google Scholar 

  3. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer, Heidelberg (2007)

    Google Scholar 

  4. Pastor, Ó.: Conceptual Modeling Meets the Human Genome. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 1–11. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Paton, W.N., Khan, S., Hayes, A., Moussouni, F., Brass, A., Eilbeck, K., Globe, C., Hubbard, S., Oliver, S.: Conceptual modeling of genomic information. Bioinformatics 16(6), 548–557 (2000)

    Article  Google Scholar 

  6. Ram, S.: Toward Semantic Interoperability of Heterogeneous Biological Data Sources. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 32–32. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Garwood, K., Garwood, C., Hedeler, C., Griffiths, T., Swainston, N., Oliver, S., Paton, W.: Model-driven user interface for bioinformatics data resources: regenerating the wheel as an alternative to reinventing it. Bioinformatics 7(532), 1–14 (2006)

    Google Scholar 

  8. Bornberg-Bauer, E., Paton, N.: Conceptual data modelling for bioinformatics. Briefings in Bioinformatics 3(2), 166–180 (2002)

    Article  Google Scholar 

  9. Wheeler, D.A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y., Makhijani, V., Roth, G.T., Gomes, X., Tartaro, K., Niazi, F., Turcotte, C.L., Irzyk, G.P., Lupski, J.R., Chinault, C., Song, X., Liu, Y., Yuan, Y., Nazareth, L., Qin, X., Muzny, D.M., Margulies, M., Weinstock, G.M., Gibbs, R.A., Rothberg, J.M.: The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–877 (2008)

    Article  Google Scholar 

  10. Gerstein, M.B., Bruce, C., Rozowsky, J., Zheng, D., Du, J., Korbel, J., Emanuelsson, O., Zhang, Z., Weissman, S., Snyder, M.: What is a gene, post-ENCODE? History and updated definition. Genome Res. 17, 669–681 (2007)

    Article  Google Scholar 

  11. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science, New York (2002), http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mboc4

    Google Scholar 

  12. Gene Nomenclature Committee, http://www.genenames.org

  13. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

  14. Hedeler, C., Wong, H.M., Cornell, M.J., Alam, I., Soanes, D., Rattray, M., Hubbrad, S.J., Talbot, N.J., Oliver, S.G., Paton, N.: e-Fungi: a data resource for comparative analysis of fungal genomes. BMC Genomics 8(426), 1–15 (2007)

    Google Scholar 

  15. e-fungi Project, http://www.cs.man.ac.uk/cornell/eFungi/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pastor, O., Levin, A.M., Celma, M., Casamayor, J.C., Virrueta, A., Eraso, L.E. (2011). Model-Based Engineering Applied to the Interpretation of the Human Genome. In: Kaschek, R., Delcambre, L. (eds) The Evolution of Conceptual Modeling. Lecture Notes in Computer Science, vol 6520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17505-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17505-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17504-6

  • Online ISBN: 978-3-642-17505-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics