Skip to main content

NTRU-Like Public Key Cryptosystems beyond Dedekind Domain up to Alternative Algebra

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6340))

Abstract

The main purpose of this paper is to illustrate the fundamental concepts behind the NTRU public key cryptosystem can be extended to a broader algebra than Dedekind domains and the NTRU underlying ring may be replaced by a non-commutative or even non-associative algebra.

To cross the border of Dedekind or Euclidean domains, we prove that it is possible to extend NTRU to the algebra of polynomials with coefficients in the non-commutative ring of quaternions as well as the non-associative octonions algebra (a power-associative and alternative algebra of dimension eight over a principal ideal domain).

We also demonstrate that the security of the proposed non-associative cryptosystem relies on the intractability of shortest vector problem in a certain type of lattice. The least advantage of the non-associativity of the underlying algebra is that the resulting lattice is not fully classified under Convolutional Modular Lattice (CML). To the best of our knowledge, no non-associative public key cryptosystem based on non-associative algebra has been proposed in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 10–19. ACM, New York (1998)

    Chapter  Google Scholar 

  2. Baez, J.C.: The octonions. Bulletin of the American Mathematical Society 39, 145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bailey, D.V., Coffin, D., Elbirt, A., Silverman, J.H., Woodbury, A.D.: NTRU in constrained devices. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 262–272. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Coglianese, M., Goi, B.M.: MaTRU: A new NTRU-based cryptosystem. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 232–243. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Conway, J.H., Smith, D.A.: On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. A. K. Peters, Ltd., Wellesley (2003)

    MATH  Google Scholar 

  6. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

    Google Scholar 

  7. Gaborit, P., Ohler, J., Solé, P.: CTRU, a polynomial analogue of NTRU. Tech. rep., INRIA (2002), ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-4621.pdf

  8. Gama, N., Howgrave-Graham, N., Nguyen, P.Q.: Symplectic lattice reduction and ntru. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 233–253. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Hoffstein, J., Pipher, J., Silverman, J.H.: An Introduction to Mathematical Cryptography. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  12. Hoffstein, J., Silverman, J.: Optimizations for NTRU. In: Public Key Cryptography and Computational Number Theory, pp. 11–15 (2000)

    Google Scholar 

  13. Hoffstein, J., Silverman, J.H., Whyte, W.: On estimating the lattice security of NTRU (2005)

    Google Scholar 

  14. IEEE P1363: Standard Specifications for Public-Key Cryptographic Techniques Based on Hard Problems over Lattices (December 2008), http://grouper.ieee.org/groups/1363/

  15. Kaps, J.P.: Cryptography for Ultra-Low Power Devices. Ph.d. dissertation, ECE Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA (May 2006)

    Google Scholar 

  16. Karimianpour, C.: Lattice-Based Cryptosystems. Master’s thesis, Ottawa, Canada (2007)

    Google Scholar 

  17. Kouzmenko, R.: Generalizations of the NTRU Cryptosystem. Master’s thesis, Polytechnique, Montreal, Canada (2006)

    Google Scholar 

  18. Malekian, E., Zakerolhosseini, A., Mashatan, A.: QTRU: A lattice attack resistant version of NTRU PKCS. Cryptology ePrint Archive, Report 2009/330, submitted for publication (2009), http://eprint.iacr.org/

  19. May, A.: Cryptanalysis of NTRU (1999) (unpublished paper)

    Google Scholar 

  20. Micciancio, D.: The shortest vector problem is NP-hard to approximate to within some constant. SIAM Journal on Computing 30(6), 2008–2035 (2001); preliminary version in FOCS 1998

    Article  MATH  MathSciNet  Google Scholar 

  21. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective. The Kluwer International Series in Engineering and Computer Science, vol. 671. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  22. Schneider, M., Johannes Buchmann, R.L.: Probabilistic analysis of LLL reduced bases. In: Algorithms and Number Theory. Dagstuhl Seminar Proceedings (2009)

    Google Scholar 

  23. Nevins, M., Karimianpour, C., Miri, A.: NTRU over rings beyond Z. Accepted to Designs, Codes and Cryptography (May 2009)

    Google Scholar 

  24. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Rotman, J.J.: Advanced Modern Algebra. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  26. Schafer, R.D.: An introduction to non-associative algebras. Dover Publications Inc., New York (1996); corrected reprint of the 1966 original

    Google Scholar 

  27. Sham, Z.Y.: Quaternion Algebras and Quadratic Forms. Master’s thesis, Waterloo, Ontario, Canada (2008)

    Google Scholar 

  28. Silverman, J.H.: Dimension-reduced lattices, zero-forced lattices, and the NTRU public key cryptosystem (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malekian, E., Zakerolhosseini, A. (2010). NTRU-Like Public Key Cryptosystems beyond Dedekind Domain up to Alternative Algebra. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds) Transactions on Computational Science X. Lecture Notes in Computer Science, vol 6340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17499-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17499-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17498-8

  • Online ISBN: 978-3-642-17499-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics