Distributed Detection of Spatially Constant Phenomena

  • Chiara BurattiEmail author
  • Marco Martalò
  • Roberto Verdone
  • Gianluigi Ferrari
Part of the Signals and Communication Technology book series (SCT)


In this chapter, we analyze the problem of distributed detection of a spatially constant phenomenon in IEEE 802.15.4-based Wireless Sensor Networks (WSNs). We first present a communication-theoretic framework on distributed detection in clustered sensor networks with tree-based topologies and hierarchical multi-level fusion. The sensor nodes observe a binary phenomenon and transmit their own data to an Access Point (AP), possibly through intermediate Fusion Centers (FCs), which perform majority-like fusion strategies. Note that the AP functionality is concentrated in the Personal Area Network (PAN) coordinator and this notation is used to highlight the fact that the AP is the network collector. Moreover, the (FCs) correspond, according to an IEEE 802.15.4 notation, to Full Function Devices (FFDs), whereas the sensors are implemented through Reduced Function Devices (RFDs). We investigate the impact of uniform and non-uniform clustering on the system performance, evaluated in terms of probability of decision error on the phenomenon status at the AP. Our results show that, in the absence of inter-node interference (low traffic load), uniform clustering leads to minimum performance degradation, which depends only on the number of decision levels, rather than on the specific clustered topology.


Sensor Network Access Point Network Lifetime Communication Link Receive Signal Strength Indication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Shi, T.W. Sun, R.D. Wesel, Quasi-convexity and optimal binary fusion for distributed detection with identical sensors in generalized gaussian noise. IEEE Trans. Inform. Theory 47(1), 446–450 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    G. Ferrari, R. Pagliari, Decentralized detection in sensor networks with noisy communication links. In: F. Davoli, S. Palazzo, S. Zappatore (eds) Distributed Cooperative Laboratories: Networking, Instrumentation, and Measurements (Signals and Communication Technology) (Springer, New York, 2006)Google Scholar
  3. 3.
    G. Ferrari, R. Pagliari, Decentralized binary detection with noisy communication links. IEEE Trans. Aerosp. Electron. Syst. 42(4), 1554–1563 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Chen, L. Tong, P.K. Varshney, Channel aware distributed detection in wireless sensor networks. IEEE Signal Process. Mag. 23(4), 16–26 (2006). Special Issue on Distributed Signal Processing for Sensor NetworksCrossRefzbMATHGoogle Scholar
  5. 5.
    Q. Cheng, B. Chen, P.K. Varshney, Detection performance limits for distributed sensor networks in the presence of non-ideal channels. IEEE Trans. Wirel. Commun. 5(11), 3034–3038 (2006)CrossRefGoogle Scholar
  6. 6.
    R. Niu, B. Chen, P.K. Varshney, Fusion of decisions transmitted over Rayleigh fading channels in wireless sensor networks. IEEE Trans. Signal Process. 54(3), 1018–1027 (2006)CrossRefGoogle Scholar
  7. 7.
    B. Chen, R. Jiang, T. Kasetkasem, P.K. Varshney, Channel aware decision fusion in wireless sensor networks. IEEE Trans. Signal Process. 52(12), 3454–6458 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    G. Ferrari, M. Martalò, R. Pagliari, Decentralized detection in clustered sensor networks. IEEE Trans. Aerosp. Electron. Syst., 47(2), April (2011)Google Scholar
  9. 9.
    A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1991)Google Scholar
  10. 10.
    R. Meester, R. Roy, Continuum Percolation (Cambridge University Press, Cambridge, 1996)zbMATHGoogle Scholar
  11. 11.
    G.R. Grimmet, Percolation (Springer, New York, 1999)Google Scholar
  12. 12.
    O. Dousse, F. Baccelli, P. Thiran, Impact of interferences on connectivity in ad hoc networks, in Proceedings of IEEE Conference on Computer Communication (INFOCOM), vol. 3, San Francisco, USA, April 2003, pp. 1724–1733Google Scholar
  13. 13.
    L. Booth, J. Brook, M. Franceschetti, R. Meester, Continuum percolation and the geometry of wireless networks. Ann. Appl. Prob. 13(2), 722–733 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    O.K. Tonguz, G. Ferrari, Ad Hoc Wireless Networks: A Communication-Theoretic Perspective (Wiley, Chichester, 2006)CrossRefGoogle Scholar
  15. 15.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)CrossRefzbMATHGoogle Scholar
  16. 16.
    G. Ferrari, M. Martalò, R. Pagliari, On multi-level decentralized detection in sensor networks, in Proceedings of International Conference on Intelligent Systems and Computing: Theory and Applications (ISYC), Ayia Napa, Cyprus, July 2006Google Scholar
  17. 17.
    Opnet Website,
  18. 18.
    N. I. of Standards and T. N. Website,
  19. 19.
    G. Ferrari, P. Medagliani, M. Martalò, A. Muzzini, Zigbee wireless sensor networks with data fusion, in Proceedings of International Symposium on Communications, Control and Signal Processing (ISCCSP), St. Julians, Malta, March 2008, pp. 472–477Google Scholar
  20. 20.
    Cross-Bow, Wireless sensor networks,
  21. 21.
    Atmel Corporation, Atmel microcontroller,
  22. 22.
    Texas Instruments, RF/IF and ZigBee solutions,
  23. 23.
    R.E. Ziemer, Elements of Engineering Probability & Statistics (Prentice-Hall, Upper Saddle River, 1997)Google Scholar
  24. 24.
    G. Ferrari, M. Martalò, Extending the lifetime of sensor networks through adaptive reclustering, EURASIP J. Wirel. Commun. Netw. 2007, 20 pages, Special Issue on “Novel Techniques for Analysis & Design of Cross-Layer Optimized Wireless Sensor Networks”, article ID 31809. doi: 10.1155/2007/31809
  25. 25.
    J.H. Conway, R.K. Guy, The Book of Numbers (Springer, New York, 1996)zbMATHGoogle Scholar
  26. 26.
    IEEE 802.15.4 Std, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) (IEEE Computer Society Press, 2003), pp. 1–679, ISBN: 0-7381-3677-5Google Scholar
  27. 27.
    G. Ferrari, P. Medagliani, S. Di Piazza, M. Martalò, Wireless sensor networks: performance analysis in indoor scenarios. EURASIP J. Wirel. Commun. Netw. 2007, 14 pages (2007), Special Issue on “MobileMAN (Mobile Multi-hop Ad Hoc Networks): From Theory to Reality, article ID 81864. doi: 10.1155/2007/81864
  28. 28.
    J. Ma, M. Gao, Q. Zhang, L.M. Ni, W. Zhu, Localized low-power topology control algorithms in IEEE 802.15.4-based sensor networks, in Proceedings of IEEE International Conference on Distributed Computing Systems, Columbus, OH, USA, June 2005, pp. 27–36Google Scholar
  29. 29.
    G. Ferrari, P. Medagliani, M. Martalò, Performance analysis of Zigbee wireless sensor networks with relaying, in Proceedings of International Workshop on Distributed Cooperative Laboratories (Ingrid), Santa Margherita Ligure, Italy, April 2007Google Scholar
  30. 30.
    G. Ferrari, R. Pagliari, M. Martalò, Decentralized binary detection with non-constant SNR profile at the sensors. Int. J. Sens. Netw. 4(1), 23–36 (2008). Special Issue on Energy-Efficient Algorithm and Protocol Design in Sensor NetworksCrossRefGoogle Scholar
  31. 31.
    J. Tsitsiklis, Decentralized detection by a large number of sensor. Math. Control Signals Syst. (MCSS) 1(2), 167–182 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    S. Alhakeem, P.K. Varshney, A unified approach to the design of decentralized detection systems. IEEE Trans. Aerosp. Electron. Syst. 31(1), 9–20 (1995)CrossRefGoogle Scholar
  33. 33.
    P. Willett, B. Tober, P. Swaszek, Fully-connected non-hierarchical decentralized detection networks, in Proceedings of IEEE Conference on Control Applications, Dayton, OH, USA, September 1992, pp. 404–409Google Scholar
  34. 34.
    A.B. Carlson, P.B. Crilly, J.C. Rutledge, Communication Systems, An Introduction to Signals and Noise in Electrical Communication, 4th edn (McGraw-Hill, New York, 2002)Google Scholar
  35. 35.
    A.F. Molisch, Wireless Communications (Wiley, Chichester, 2005)Google Scholar
  36. 36.
    J.G. Proakis, Digital Communications, 4th edn (McGraw-Hill, New York, 2001)Google Scholar
  37. 37.
    X. Hu, E. Eleftheriou, D. Arnold, Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inform. Theory 51(1), 386–398 (2005)CrossRefMathSciNetGoogle Scholar
  38. 38.
    R.G. Gallager, Low Density Parity Check Codes (MIT Press, Cambridge, 1963)Google Scholar
  39. 39.
    F.R. Kschischang, B.J. Frey, H.A. Loeliger, Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47(2), 498–519 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)CrossRefGoogle Scholar
  41. 41.
    C.Y. Chong, S.P. Kumar, Sensor networks: evolution, challenges, and opportunities. Proc. IEEE 91(8), 1247–1256 (2003)CrossRefGoogle Scholar
  42. 42.
    S.N. Simic, S. Sastry, Distributed environmental monitoring using random sensor networks, in Proceedings of International Work. on Inform. Processing in Sensor Networks (IPSN), Palo Alto, CA, USA, April 2003, pp. 582–592Google Scholar
  43. 43.
    J.N. Tsitsiklis, Decentralized detection. In: H.V. Poor, J.B. Thomas (eds) Advances in Statistical Signal Process, vol. 2 (JAI Press, Greenwich, 1993), pp. 297–344Google Scholar
  44. 44.
    R. Verdone, D. Dardari, G. Mazzini, A. Conti, Wireless Sensor and Actuator Networks: Technologies, Analysis and Design (Elsevier, London, 2008)Google Scholar
  45. 45.
    R.R. Tenney, N.R. Sandell, Detection with distributed sensors. IEEE Trans. Aerosp. Electron. Syst. 17(4), 501–510 (1981)CrossRefMathSciNetGoogle Scholar
  46. 46.
    A. Reibman, L. Nolte, Design and performance comparison of distributed detection networks. IEEE Trans. Aerosp. Electron. Syst. 23(6), 789–737 (1987)CrossRefMathSciNetGoogle Scholar
  47. 47.
    R. Viswanathan, P.K. Varshney, Distributed detection with multiple sensors—Part I: fundamentals. Proc. IEEE 85(1), 54–63 (1997)CrossRefGoogle Scholar
  48. 48.
    J.F. Chamberland, V.V. Veeravalli, Decentralized detection in sensor networks. IEEE Trans. Signal Process. 51(2), 407–416 (2003)CrossRefGoogle Scholar
  49. 49.
    H. Gharavi, K. Ban, Multihop sensor network design for wide-band communications. Proc. IEEE 91(8), 1221–1234 (2003)CrossRefGoogle Scholar
  50. 50.
    I.Y. Hoballah, P.K. Varshney, An information theoretic approach to the distributed detection problem. IEEE Trans. Inform. Theory 35(5), 988–994 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Z.Q. Luo, An isotropic universal decentralized estimation scheme for a bandwidth constrained ad hoc sensor network. IEEE J. Select. Areas Commun. 23(4), 735–744 (2005)CrossRefGoogle Scholar
  52. 52.
    R. Blum, A. Kassam, H. Poor, Distributed detection with multiple sensors: Part II. Proc. IEEE 85(1), 64–79 (1997)CrossRefGoogle Scholar
  53. 53.
    T.S. Rappaport, Wireless Communications, Principles & Pratice, 2nd edn (Prentice-Hall, Uper Saddle River, 2002)Google Scholar
  54. 54.
    B. Chen, P.K. Willett, On the optimality of the likelihood-ratio test for local sensor decision rules in the presence of nonideal channels. IEEE Trans. Inform. Theory 51(2), 693–699 (2005)CrossRefMathSciNetGoogle Scholar
  55. 55.
    M. Madishetty, V. Kanchumarthy, C.H. Gowda, R. Viswanathan, Distributed detection with channel errors, in Proceedings of Southeastern Symposium on System Theory (SSST), Tuskegee University, AL, USA, March 2005, pp. 302–306Google Scholar
  56. 56.
    A.R. Reibman, L.W. Nolte, Optimal design and performance of distributed signal detection systems with faults. IEEE Trans. Acoust., Speech Signal Process. 38(10), 1771–1782 (1990)CrossRefGoogle Scholar
  57. 57.
    S.C.A. Thomopoulos, L. Zhang, Distributed decision fusion in the presence of networking delays and channel errors. Inform. Sci. 66(1–2), 91–118 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    N. Patwari, A.O. Hero, Hierarchical censoring for distributed detection in wireless sensor networks, in Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol 4. Hong Kong, April 2003, pp. 848–851Google Scholar
  59. 59.
    M. Gastpar, M. Vetterli, P.L. Dragotti, Sensing reality and communicating bits: a dangerous liaison. IEEE Signal Process. Mag. 23(4), 70–83 (2006)CrossRefGoogle Scholar
  60. 60.
    K. Yamasaki, T. Ohtsuki, Design of energy-efficient wireless sensor networks with censoring, on–off, and censoring and on–off sensors based on mutual information, in Proceedings of IEEE Vehicular Technology Conference (VTC), vol 2, Stockholm, Sweden, May 2005, pp. 1312–1316Google Scholar
  61. 61.
    Y. Lin, B. Chen, P.K. Varshney, Decision fusion rules in multi-hop wireless sensor networks. IEEE Trans. Aerosp. Electron. Syst. 41(2), 475–488 (2005)CrossRefGoogle Scholar
  62. 62.
    N.A.C. Cressie, Statistics for Spatial Data (Wiley, New York, 1993)Google Scholar
  63. 63.
    C. Guestrin, A. Krause, A.P. Singh, Near-optimal sensor placement in Gaussian processes, in Proceedings of International Conference on Machine Learning, vol. 119, Bonn, Germany, August 2005, pp. 265–272Google Scholar
  64. 64.
    H. Wang, K. Yao, D. Estrin, Information-theoretic approaches for sensor selection and placement in sensor networks for target localization and tracking. J. Commun. Netw. 7(4), 438–449 (2005)Google Scholar
  65. 65.
    T. Ikeda, H. Ishiguro, M. Asada, Adaptive fusion of sensor signals based on mutual information maximization, in Proceedings of International Conference on Robotics and Automation (ICRA), vol 3, Taipei, Taiwan, September 2003, pp. 4398–4402Google Scholar
  66. 66.
    F. Gini, F. Lombardini, L. Verrazzani, Decentralised detection strategies under communication constraints. IEE Proc. Radar Sonar Navig. 145(4), 199–208 (1998)CrossRefGoogle Scholar
  67. 67.
    R. Jiang, B. Chen, Fusion of censored decisions in wireless sensor networks. IEEE Trans. Wirel. Commun. 4(6), 2668–2673 (2005)CrossRefGoogle Scholar
  68. 68.
    R. Ahlswede, N. Cai, S.Y.R. Li, R.W. Yeung, Network information flow. IEEE Trans. Inform. Theory 46(4), 1204–1216 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  69. 69.
    S.Y.R. Li, R.W. Yeung, N. Cai, Linear network coding. IEEE Trans. Inform. Theory 49(2), 371–381 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  70. 70.
    R. Koetter, M. Medard, An algebraic approach to network coding. IEEE/ACM Trans. Netw. 11(5), 782–795 (2003)CrossRefGoogle Scholar
  71. 71.
    X. Bao, J. Li, Matching code-on-graph with network-on-graph: adaptive network coding for wireless relay networks, in Proceedings of Allerton Conference on Communication, Control and Computing (ALLERTON), Urbana Champaign, IL, USA, September 2005Google Scholar
  72. 72.
    C. Fragouli, E. Soljanin, Information flow decomposition for network coding. IEEE Trans. Inform. Theory 52(3), 829–848 (2006)CrossRefMathSciNetGoogle Scholar
  73. 73.
    D. Tuninetti, C. Fragouli, On the throughput improvement due to limited complexity processing at relay nodes, in Proceedings of IEEE Symposium on Information Theory (ISIT), Adelaide, Australia, September 2005, pp. 1081–1085Google Scholar
  74. 74.
    M. Xiao, T. Aulin, A physical layer aspect of network coding with statistically independent noisy channels, in Proceedings of IEEE International Conference on Communication (ICC), vol 9, Instanbul, Turkey, June 2006, pp. 3996–4001Google Scholar
  75. 75.
    C. Hausl, P. Dupraz, Joint network-channel coding for the multiple-access relay channel, in Proceedings of IEEE Conference on Sensor and Ad Hoc Communications and Networks (SECON), vol 3, New York, NY, USA, June 2006, pp. 817–822Google Scholar
  76. 76.
    C.-C. Chang, H.-N. Lee, Space-time mesh codes for the multiple-access relay network: space vs. time diversity benefits, in Proceedings of Workshop on Network Coding, Theory, and Applications (NetCod), San Diego, CA, USA, January 2007Google Scholar
  77. 77.
    A. Kansal, A. Ramamoorthy, M. Srivastava, G. Pottie, On sensor network lifetime and data distortion, in Proceedings of IEEE Symposium on Information Theory (ISIT), Adelaide, Australia, September 2005, pp. 6–10Google Scholar
  78. 78.
    S. Arnon, Deriving an upper bound on the average operation time of a wireless sensor network. IEEE Commun. Lett. 9(2), 154–156 (2005)CrossRefGoogle Scholar
  79. 79.
    F. Ordonez, B. Krishnamachari, Optimal information extraction in energy-limited wireless sensor networks. IEEE J. Select. Areas Commun. 22(6), 1121–1129 (2004)CrossRefGoogle Scholar
  80. 80.
    H. Zhang, J. Hou, On deriving the upper bound of lifetime for large sensor networks, in Proceedings of ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), Tokyo, Japan, May 2004, pp. 121–132Google Scholar
  81. 81.
    Z. Hu, B. Li, On the fundamental capacity and lifetime limits of energy-constrained wireless sensor networks, in Proceedings of IEEE Real-Time and Embedded Technology and Applications Symp. (RTAS), Toronto, Canada, May 2004, pp. 2–9Google Scholar
  82. 82.
    D.M. Blough, P. Santi, Investigating upper bounds on network lifetime extension for cell-based energy conservation techniques in stationary ad-hoc networks, in Proceedings of ACM International Conference on Mobile Computing and Networking (MOBICOM), Atlanta, GA, USA, September 2002, pp. 183–192Google Scholar
  83. 83.
    M. Bhardwaj, T. Garnett, A.P. Chandrakasan, Upper bounds on the lifetime of sensor networks, in Proceedings of IEEE International Conference on Communication (ICC), vol 119, Helsinki, Finland, June 2001, pp. 785–790Google Scholar
  84. 84.
    M. Bhardwaj, A.P. Chandrakasan, Bounding the lifetime of sensor networks via optimal role assignments, in Proceedings of IEEE Conference on Computer Communications (INFOCOM), vol 3, New York, NY, USA, June 2002, pp. 1587–1596Google Scholar
  85. 85.
    V. Rai, R.N. Mahapatra, Lifetime modeling of a sensor network, in Proceedings of Design, Automation and Test in Europe (DATE), vol 1, Messe Munich, Germany, March 2005, pp. 202–203Google Scholar
  86. 86.
    Y. Chen, Q. Zhao, On the lifetime of wireless sensor networks. IEEE Commun. Lett. 9(11), 976–978 (2005)CrossRefGoogle Scholar
  87. 87.
    Q. Zhao, A. Swami, L. Tong, The interplay between signal processing and networking in sensor networks. IEEE Signal Process. Mag. 23(4), 84–93 (2006)CrossRefGoogle Scholar
  88. 88.
    K. Kalpakis, K. Dasgupta, P. Namjoshi, Maximum lifetime data gathering and aggregation in wireless sensor networks, University of Maryland, Baltimore, Tech. Rep., 2002,∼kalpakis/
  89. 89.
    M.E.S. Coleri, T.J. Koo, Lifetime analysis of a sensor network with hybrid automata modelling, in Proceedings of International Workshop on Wireless Sensor Networks and Applications (WSNA), Atlanta, USA, September 2002, pp 98–104Google Scholar
  90. 90.
    M. Franceschetti, R. Meester, Critical node lifetime in random networks via the Chen-Stein method. IEEE Trans. Inform. Theory 52(6), 2831–2837 (2006)CrossRefMathSciNetGoogle Scholar
  91. 91.
    N.F. Timmons, W.G. Scanlon, Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking, in Proceedings of IEEE Conference on Sensor and Ad Hoc Communications and Networks (SECON), Santa Clara, CA, USA, October 2004, pp. 16–24Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chiara Buratti
    • 1
    Email author
  • Marco Martalò
    • 2
  • Roberto Verdone
    • 1
  • Gianluigi Ferrari
    • 2
  1. 1.Dipto. Elettronica, Informatica e Sistemistica (DEIS) Università di BolognaBolognaItaly
  2. 2.Dipto. Ingegneria dell’InformazioneUniversità di ParmaParmaItaly

Personalised recommendations