Skip to main content

Entrainment Threshold of Loose Boundary Streams

  • Chapter
  • First Online:
Experimental Methods in Hydraulic Research

Part of the book series: Geoplanet: Earth and Planetary Sciences ((GEPS,volume 1))

Abstract

A. F. Shields carried out his doctoral research study on sediment transport in the Technischen Hochschule Berlin. He is well known for proposing a useful diagram, known as Shields diagram, that provides the criterion for the threshold of sediment entrainment, which is an essential requirement for the determination of sediment motion in a loose boundary stream. His diagram becomes famous and is most frequently referred in the literature. It has provided an enormous inspiration to initiate a sizable number of researches over last seven decades. Since his pioneering work, numerous attempts have so far been made to quantify the required flow condition (threshold boundary shear stress) for the beginning of sediment movement. The important laboratory experimental and theoretical studies on threshold of sediment entrainment under steady stream flows are briefly summarized, as a perspective review, highlighting the empirical formulations and semitheoretical analyses. A special attention is given towards the influence of the turbulent bursting on sediment entrainment. Latest experiments evidence the mechanism of sediment entrainment is governed by the sweep events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksoy S (1973) Fluid forces acting on a sphere near a solid boundary. In: Proceedings of 15th IAHR Congress, vol 1. Istanbul, Turkey, pp 217–224

    Google Scholar 

  • Apperley LW (1968) Effect of turbulence on sediment entrainment. Ph.D. thesis, University of Auckland, New Zealand

    Google Scholar 

  • Bagnold RA (1974) Fluid forces on a body in shear flow; experimental use of stationary flow. Proc R Soc Lond 340A:147–171

    Google Scholar 

  • Brayshaw AC, Frostick LE, Reid I (1983) The hydrodynamics of particle clusters and sediment entrainment in course alluvial channels. Sedimentology 30:137–143

    Article  Google Scholar 

  • Brownlie WR (1981) Prediction of flow depth and sediment discharge in open channels. Report Number KH-R-43A, Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, California

    Google Scholar 

  • Buffington JM (1999) The legend of A. F. Shields. J Hydraul Eng 125:376–387

    Article  Google Scholar 

  • Buffington JM, Montgomery DR (1997) A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour Res 33:1993–2029

    Article  Google Scholar 

  • Cao Z (1997) Turbulent bursting-based sediment entrainment function. J Hydraul Eng 123:233–236

    Article  Google Scholar 

  • Cao Z, Pender G, Meng J (2006) Explicit formulation of the Shields diagram for incipient motion of sediment. J Hydraul Eng 132:1097–1099

    Article  Google Scholar 

  • Carstens MR (1966) An analytical and experimental study of bed ripples under water waves. Georgia Institute of Technology, School of Civil Engineering, Atlanta, Quarter reports 8 and 9

    Google Scholar 

  • Chepil WS (1961) The use of spheres to measure lift and drag on wind-eroded soil grains. Proc Soil Sci Soc Am 25:343–345

    Article  Google Scholar 

  • Clifford NJ, McClatchey J, French JR (1991) Measurements of turbulence in the benthic boundary layer over a gravel bed and comparison between acoustic measurements and predictions of the bedload transport of marine gravels. Sedimentology 38:161–171

    Article  Google Scholar 

  • Coleman NL (1967) A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypothetical stream bed. Proceedings of 12th IAHR Congress, vol 3. Fort Collins, pp 185–192

    Google Scholar 

  • Committee T (1966) Sediment transportation mechanics: initiation of motion. J Hydraul Div 92:291–314

    Google Scholar 

  • Corino ER, Brodkey RS (1969) A visual investigation of the wall region in turbulent flow. J Fluid Mech 37:1–30

    Article  Google Scholar 

  • Dancey CL, Diplas P, Papanicolaou A, Bala M (2002) Probability of individual grain movement and threshold condition. J Hydraul Eng 128:1069–1075

    Article  Google Scholar 

  • Davies TRH, Samad MFA (1978) Fluid dynamic lift on a bed particle. J Hydraul Div 104:1171–1182

    Google Scholar 

  • Dey S (1999) Sediment threshold. Appl Math Model 23:399–417

    Article  Google Scholar 

  • Dey S, Papanicolaou A (2008) Sediment threshold under stream flow: a state-of-the-art review. KSCE J Civ Eng 12:45–60

    Article  Google Scholar 

  • Dey S, Raikar RV (2007) Characteristics of loose rough boundary streams at near-threshold. J Hydraul Eng 133:288–304

    Article  Google Scholar 

  • Drake TG, Shreve RL, Dietrich WE, Whiting PJ, Leopold LB (1988) Bedload transport of fine gravel observed by motion picture photography. J Fluid Mech 192:193–217

    Article  Google Scholar 

  • Egiazaroff JV (1965) Calculation of non-uniform sediment concentrations. J Hydraul Div 91:225–247

    Google Scholar 

  • Einstein HA (1950) The bed-load function for sediment transportation in open channel flows. US Department of Agriculture, Washington DC, Technical bulletin number 1026

    Google Scholar 

  • Einstein HA, El-Samni EA (1949) Hydrodynamic forces on rough wall. Rev Mod Phys 21:520–524

    Article  Google Scholar 

  • Gessler J (1966) Geschiebetrieb bei mischungen untersucht an naturlichen, abpflasterungserscheinungen in kanalen. Nr. 69, Mitteilungen der Versuchsanstalt für Wasserbau und Erdbau, ETH Zurich, Germany

    Google Scholar 

  • Gessler J (1970) Self-stabilizing tendencies of alluvial channels. J Waterway Harbors Div 96:235–249

    Google Scholar 

  • Goncharov VN (1964) Dynamics of channel flow. Israel Programme for Scientific Translation, Moscow, Russia

    Google Scholar 

  • Grass AJ (1970) Initial instability of fine bed sand. J Hydraul Div 96:619–632

    Google Scholar 

  • Grass AJ (1971) Structural features of turbulent flow over smooth and rough boundaries. J Fluid Mech 50:233–255

    Article  Google Scholar 

  • Heathershaw AD, Thorne PD (1985) Sea-bed noises reveal role of turbulent bursting phenomenon in sediment transport by tidal currents. Nature 316:339–342

    Article  Google Scholar 

  • Ikeda S (1982) Incipient motion of sand particles on side slopes. J Hydraul Div 108:95–114

    Google Scholar 

  • Iwagaki Y (1956) Fundamental study on critical tractive force. Trans JSCE 41:1–21

    Google Scholar 

  • James C (1990) Prediction of entrainment conditions for nonuniform, noncohesive sediments. J Hydraul Res 28:25–41

    Article  Google Scholar 

  • Jeffreys H (1929) On the transport of sediments in stream. Proc Cambridge Philos Soc 25:272

    Article  Google Scholar 

  • Kennedy JF (1995) The Albert Shields story. J Hydraul Eng 121:766–772

    Article  Google Scholar 

  • Kline SJ, Reynolds WC, Straub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30:741–773

    Article  Google Scholar 

  • Kramer H (1935) Sand mixtures and sand movement in fluvial levels. Trans ASCE 100:798–838

    Google Scholar 

  • Kurihara M (1948) On the critical tractive force, vol 4. Research Institute for Hydraulic Engineering, Report number 3

    Google Scholar 

  • Lane EW, Kalinske AA (1939) The relation of suspended to bed materials in river. Trans Am Geophys Union 20:637

    Google Scholar 

  • Leliavsky S (1966) An introduction to fluvial hydraulics. Dover, New York

    Google Scholar 

  • Ling CH (1995) Criteria for incipient motion of spherical sediment particles. J Hydraul Eng 121:472–478

    Article  Google Scholar 

  • Lu SS, Willmarth WW (1973) Measurements of the structures of the Reynolds stress in a turbulent boundary layer. J Fluid Mech 60:481–571

    Article  Google Scholar 

  • Mantz PA (1977) Incipient transport of fine grains and flanks by fluids-extended Shields diagram. J Hydraul Div 103:601–615

    Google Scholar 

  • McEwan I, Heald J (2001) Discrete particle modeling of entrainment from flat uniformly sized sediment beds. J Hydraul Eng 127:588–597

    Article  Google Scholar 

  • Miller MC, McCave IN, Komar PD (1977) Threshold of sediment motion under unidirectional currents. Sedimentology 24:507–527

    Article  Google Scholar 

  • Mingmin H, Qiwei H (1982) Stochastic model of incipient sediment motion. J Hydraul Div 108:211–224

    Google Scholar 

  • Neill CR (1968) Note on initial movement of coarse uniform bed-material. J Hydraul Res 6:173–176

    Article  Google Scholar 

  • Nelson J, Shreve RL, McLean SR, Drake TG (1995) Role of near-bed turbulence structure in bed load transport and bed form mechanics. Water Resour Res 31:2071–2086

    Article  Google Scholar 

  • Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. Balkema, Rotterdam, the Netherlands

    Google Scholar 

  • Nikora V, Goring D (2000) Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng 126:679–690

    Article  Google Scholar 

  • Paintal A (1971) Concept of critical shear stress in loose boundary open channels. J Hydraul Res 9:91–113

    Article  Google Scholar 

  • Papanicolaou A, Diplas P, Dancey C, Balakrishnan M (2001) Surface roughness effects in near-bed turbulence: implications to sediment entrainment. J Eng Mech 127:211–218

    Article  Google Scholar 

  • Papanicolaou AN, Diplas P, Evaggelopoulos N, Fotopoulos S (2002) Stochastic incipient motion criterion for spheres under various bed packing conditions. J Hydraul Eng 128:369–380

    Article  Google Scholar 

  • Paphitis D (2001) Sediment movement under unidirectional flows: an assessment of empirical threshold curves. Coastal Eng 43:227–245

    Article  Google Scholar 

  • Reitz W (1936) Uber geschiebebewegung. Wasserwirtschaft und Technik, pp 28–30

    Google Scholar 

  • Sarkar S (2010) Turbulence in loose boundary streams. Ph.D. thesis, Indian Institute of Technology, Kharagpur, India

    Google Scholar 

  • Shields AF (1936) Application of similarity principles and turbulence research to bed-load movement, vol 26. Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, Berlin, Germany, pp 5–24

    Google Scholar 

  • Soulsby RL, Whitehouse RJS (1997) Threshold of sediment motion in coastal Environments. Proceedings of combined Australasian coastal engineering and port conference, Christchurch, New Zealand, pp 149–154

    Google Scholar 

  • Sutherland AJ (1967) Proposed mechanism for sediment entrainment by turbulent flows. J Geophys Res 72:6183–6194

    Article  Google Scholar 

  • Thorne PD, Williams JJ, Heathershaw AD (1989) In situ acoustic measurements of marine gravel threshold and transport. Sedimentology 36:61–74

    Article  Google Scholar 

  • USWES (1936) Flume tests made to develop a synthetic sand which will not form ripples when used in movable bed models. United States Waterways Experiment Station, Vieksburg, Technical memorandum 99-1

    Google Scholar 

  • van Rijn LC (1984) Sediment transport, part I: bed-load transport. J Hydraul Eng 110:1431–1456

    Article  Google Scholar 

  • Vanoni VA (1964) Measurements of critical shear stress. California Institute of Technology, Pasadena, Report number KH-R-7

    Google Scholar 

  • Velikanov MA (1955) Dynamics of alluvial stream, vol 2. State Publishing House of Theoretical and Technical Literature, Russia (in Russian)

    Google Scholar 

  • Watters GZ, Rao MVP (1971) Hydrodynamic effects of seepage on bed particles. J Hydraul Div 97:421–439

    Google Scholar 

  • White CM (1940) The equilibrium of grains on the bed of a stream. Philos Trans R Soc 174A:322–338

    Google Scholar 

  • Wiberg PL, Smith JD (1987) Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resour Res 23:1471–1480

    Article  Google Scholar 

  • Wu FC, Chou YJ (2003) Rolling and lifting probabilities for sediment entrainment. J Hydraul Eng 129:110–119

    Article  Google Scholar 

  • Yalin MS (1963) An expression of bed-load transportation. J Hydraul Div 89:221–250

    Google Scholar 

  • Yalin MS, Karahan E (1979) Inception of sediment transport. J Hydraul Div 105:1433–1443

    Google Scholar 

  • Yang CT (1973) Incipient motion and sediment transport. J Hydraul Div 99:1679–1704

    Google Scholar 

  • Zanke UCE (1977) Neuer Ansatz zur Berechnung des Transportbeginns von Sedimenten unter Stromungseinfluss. Mitteilungen Des Franzius-Institut, Technical University Hannover, Germany, Heft 46

    Google Scholar 

  • Zanke UCE (2003) On the influence of turbulence on the initiation of sediment motion. Int J Sediment Res 18:17–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasish Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dey, S. (2011). Entrainment Threshold of Loose Boundary Streams. In: Rowinski, P. (eds) Experimental Methods in Hydraulic Research. Geoplanet: Earth and Planetary Sciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17475-9_2

Download citation

Publish with us

Policies and ethics