Skip to main content

Experimental Investigations of Sandy Riverbed Morphology

  • Chapter
  • First Online:
Experimental Methods in Hydraulic Research

Part of the book series: Geoplanet: Earth and Planetary Sciences ((GEPS,volume 1))

Abstract

Contemporary advances in experimental methods and technologies are facilitating new and valuable insight into research questions of long standing. Following a review of the history of investigations regarding sandy riverbed morphology, this chapter presents a series of recent investigations into outstanding gaps in understanding of fluvial bedforms. Equipment advances are highlighted in terms of use of a viscous-fluid flume, a water tunnel, an induction power transfer (IPT) carriage, a custom-built particle image velocimetry (PIV) system, a 3D laser scanner, and a flying-probe measurement system. Advances in understanding of fluvial bedforms arising from these investigations are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberle J, Nikora V (2006) Statistical properties of armored gravel bed surfaces. Water Resour Res 42:W11414. doi:10.1029/2005WR004674

    Google Scholar 

  • Aberle J, Nikora V, Henning M, Ettmer B, Hentschel B (2010) Statistical characterization of bed roughness due to bed forms: a field study in the Elbe River at Aken, Germany. Water Resour Res 46:W03521. doi:10.1029/2008WR007406

    Google Scholar 

  • Adrian RJ (1986) Multi-point optical measurements of simultaneous vectors in unsteady flow – a review. Int J Heat Fluid Flow 7:127–145

    Google Scholar 

  • Allen JRL (1968) Current ripples: their relation to patterns of water and sediment motion. Elsevier, New York

    Google Scholar 

  • Allen JRL (1969) Some recent advances in the physics of sedimentation. Proc Geol Assoc 80:1–42

    Google Scholar 

  • Amsler ML, García MH (1997) Discussion of ‘Sand-dune geometry of large rivers during floods’ by Julien PY and Klaassen GJ. J Hydraul Eng ASCE 123(6):582–584

    Google Scholar 

  • ASCE Task Committee on Flow and Transport over Dunes (2002) Flow and transport over dunes. J Hydraul Eng ASCE 128(8):726–728

    Google Scholar 

  • ASCE Task Force on Bed Forms in Alluvial Channels of the Committee on Sedimentation (1966) Nomenclature for bed forms in alluvial channels. J Hydraul Div ASCE 92(HY3):51–64

    Google Scholar 

  • Ashida K, Tanaka Y (1967) A statistical study of sand waves. Proc XII Congr Int Assoc Hydraul Res 2:103–110

    Google Scholar 

  • Bartholdy J, Flemming BW, Ernstsen VB, Winter C, Bartholomä A (2010) Hydraulic roughness over simple subaqueous dunes. Geo-Mar Lett 30(1):63–76

    Google Scholar 

  • Bertololy E (1900) Kräuselungsmarken und Dünen. Münchener Geogr. Studien: 9tes Stück (in German)

    Google Scholar 

  • Best JL (1992) On the entrainment of sediment and initiation of bed defects: insights from recent development within turbulent boundary layer research. Sedimentology 39:797–811

    Google Scholar 

  • Best J (2005) The fluid dynamics of river dunes: a review and some future research directions. J Geophys Res 110:F04S02. doi:10.1029/2004JF000218

    Google Scholar 

  • Blasius H (1910) Über die Abhängigkeit der Formen der Riffeln und Geschiebebänke vom Gefälle. Zeitschrift für Bauwesen 60:466–472 (in German)

    Google Scholar 

  • Bridge JS, Best JL (1988) Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: implications for the formation of planar laminae. Sedimentology 35:753–764

    Google Scholar 

  • Bucher WH (1919) On ripples and related sedimentary surface forms and their paleogeographic interpretation. Am J Sci 279:149–210, Fourth Series XLVII

    Google Scholar 

  • Butler JB, Lane SN, Chandler JH (2001) Characterization of the structure of river-bed gravels using two-dimensional fractal analysis. Math Geol 33(3):301–330

    Google Scholar 

  • Cameron SM, Nikora VI (2008) Eddy convection velocity for smooth- and rough-bed open-channel flows: particle image velocimetry study. In: Proceedings River Flow 2008, Izmir Turkey, 3–5 Sept 2008, pp 143–150

    Google Scholar 

  • Coleman SE (1996) Wave generation and development on a sandy river bed. Discussion of ‘The stability of a sandy river bed’ by J Fredsøe. In: Nakato T, Ettema R (eds) Issues and directions in hydraulics. A. A. Balkema, Rotterdam, pp 145–155

    Google Scholar 

  • Coleman SE (1997) Ultrasonic measurement of sediment bed profiles. In: Proceedings of the 27th congress of the international association for hydraulic research, San Francisco, Aug, pp B221–B226

    Google Scholar 

  • Coleman SE, Eling B (2000) Sand wavelets in laminar open-channel flows. J Hydraul Res IAHR 38(5):331–338

    Google Scholar 

  • Coleman SE, Eling B, Twose G (1998) Sand-wave formation in laminar open-channel flow. In: Proceedings of the seventh international symposium on river sedimentation, Hong Kong, China, 16–18 Dec 1998, pp 73–78

    Google Scholar 

  • Coleman SE, Fenton JD (2000) Potential-flow instability theory and alluvial stream bed forms. J Fluid Mech 418:101–117

    Google Scholar 

  • Coleman SE, Melville BW (1994) Bed-form development. J Hydraul Eng ASCE 120(4):544–560

    Google Scholar 

  • Coleman SE, Melville BW (1996) Initiation of bed forms on a flat sand bed. J Hydraul Eng ASCE 122(6):301–310

    Google Scholar 

  • Coleman SE, Melville BW (2001) Case study: New Zealand bridge scour experiences. J Hydraul Eng ASCE 127(7):535–546

    Google Scholar 

  • Coleman SE, Nikora VI (2009) Bed and flow dynamics leading to sediment-wave initiation. Water Resour Res 45:W04402. doi:10.1029/2007WR006741

    Google Scholar 

  • Coleman SE, Nikora V (2011) Fluvial dunes: initiation, characterisation, flow structure. Earth Surf Process Land 36(1):39–57

    Google Scholar 

  • Coleman SE, Fedele JJ, García MH (2003) Closed-conduit bedform initiation and development. J Hydraul Eng ASCE 129(12):956–965

    Google Scholar 

  • Coleman SE, Nikora VI, Melville BW, Goring DG, Clunie TM, Friedrich H (2008a) SWAT.nz: New-Zealand-based ‘Sand waves and turbulence’ experimental programme. Acta Geophys 56(2):417–439

    Google Scholar 

  • Coleman SE, Nikora VI, Schlicke T (2008b) Spatially-averaged oscillatory flow over a rough bed. Acta Geophys 56(3):698–733

    Google Scholar 

  • Colombini M (2004) Revisiting the linear theory of sand dune formation. J Fluid Mech 502:1–16

    Google Scholar 

  • Cornish V (1899) On Kumatology (the study of the waves and wave-structures of the atmosphere, hydrosphere, and lithosphere). Geogr J 13(6):624–626

    Google Scholar 

  • Cornish V (1901) On sand-waves in tidal currents. Geogr J 18(2):170–200

    Google Scholar 

  • Cornish V (1908) Discussion of ‘Experiments on the transporting power of sea currents’ by JS Owens. Geogr J 31(4):421–423

    Google Scholar 

  • Crickmore MJ (1967) Measurement of sand transport in rivers with special reference to tracer methods. Sedimentology 8:175–228

    Google Scholar 

  • Crickmore MJ (1970) Effect of flume width on bed-form characteristics. J Hydraul Div ASCE 96(HY2):473–496

    Google Scholar 

  • Darwin GH (1883) On the formation of ripple-mark in sand. Proc R Soc Lon 36:18–43

    Google Scholar 

  • de Candolle C (1883) Rides formées à la surface du sable déposé au fond de l’eau et autres phénomènes analogues. Archives des Sciences Physiques et Naturelles, Geneve No. 3, vol IX, pp 241–278 (in French)

    Google Scholar 

  • de Jong B (1983) The formation of dunes in open channel flow on an initially flattened erodible bed. In: Proceedings of the Euromech 156 – Mechanics of sediment transport, Istanbul, 12–14 July 1982, pp 119–126

    Google Scholar 

  • de Jong B (1989) Bed waves generated by internal waves in alluvial channels. J Hydraul Eng ASCE 115(6):801–817

    Google Scholar 

  • de la Beche HT (1851) The geological observer. Longman, Brown, Green and Longmans, London

    Google Scholar 

  • Deacon GF (1894) Discussion of paper on ‘Estuaries’ by HL Partiot. Proc Inst Civil Eng CXVIII:47–189

    Google Scholar 

  • El Sammak R (2006) Interactive instrumentation for civil engineering flume. In: Year 4 research projects. Department of Electrical and Computer Engineering, The University of Auckland, Auckland, New Zealand, 10 pp

    Google Scholar 

  • Engelund FA (1970) Instability of erodible beds. J Fluid Mech 42:225–244

    Google Scholar 

  • Engelund F, Fredsøe J (1982) Sediment ripples and dunes. Annu Rev Fluid Mech 14:13–37

    Google Scholar 

  • Fernandez R, Best J, López F (2006) Mean flow, turbulence structure, and bed form superimposition across the ripple-dune transition. Water Resour Res 42:W05406. doi:10.1029/2005WR004330

    Google Scholar 

  • Forchheimer P (1914) Hydraulik. Teubner Verlagsgesellschaft, Leipzig, Berlin (in German)

    Google Scholar 

  • Forel FA (1883) Les rides de fond étudiés dans le Lac Leman. Arch Sci Phys Nat 10(3):39–72

    Google Scholar 

  • Fredsøe J (1974) On the development of dunes in erodible channels. J Fluid Mech 64(1):1–16

    Google Scholar 

  • Führböter A (1983) Zur Bildung von makroskopischen Ordnungsstrukturen (Strömungsriffel und Dünen) aus sehr kleinen Zufallsstörungen. Mitteilungen des Leichtweiss-Instituts, vol 79. Technical University of Braunschweig Braunschweig, Germany, pp 1–51 (in German)

    Google Scholar 

  • Gilbert GK (1914) The transportation of débris by running water. US Geological Survey Professional Paper 86, Government Printing Office, Washington, DC

    Google Scholar 

  • Goring D, Nikora V, McEwan I (1999) Analysis of the texture of gravel beds using 2-D structure functions. In: River, coastal, and estuarine morphodynamics, Proceedings of the IAHR symposium 2, Geneva, Italy, pp 111–120

    Google Scholar 

  • Gradowczyk MH (1970) Wave propagation and boundary instability in erodible-bed channels. J Fluid Mech 33:93–112

    Google Scholar 

  • Graf WH (1984) Hydraulics of sediment transport. Water Resources Publications, Littleton

    Google Scholar 

  • Gray C, Greated CA, McCluskey DR, Easson WJ (1991) An analysis of the scanning beam PIV illumination system. Meas Sci Technol 2:717–724

    Google Scholar 

  • Guy HP, Simons DB, Richardson EV (1966) Summary of alluvial channel data from flume experiments, 1956–61. U.S. Geological Survey Professional Paper 462–1, Government Printing Office, Washington, DC

    Google Scholar 

  • Gyr A, Kinzelbach W (2004) Bed forms in turbulent channel flow. Appl Mech Rev 57(1):77–93

    Google Scholar 

  • Gyr A, Schmid A (1989) The different ripple formation mechanism. J Hydraul Res 27(1):61–74

    Google Scholar 

  • Haque MI, Mahmood K (1985) Analytical study on steepness of ripples and dunes. J Hydraul Eng ASCE 112(3):220–236

    Google Scholar 

  • Henning M, Hentschel B, Hüsener T (2009) Photogrammetric system for measurement and analysis of dune movement. In: Proceedings of the 33rd IAHR congress, Vancouver, Canada, 8 pp

    Google Scholar 

  • Hesselink L (1988) Digital image processing in flow visualization. Annu Rev Fluid Mech 20:421–485

    Google Scholar 

  • Hunt AR (1882) On the formation of ripplemark. Proc R Soc Lon 34:1–18

    Google Scholar 

  • Ibrahim H (2006) Interactive instrumentation for a civil engineering flume. In: Year 4 research projects. Department of Electrical and Computer Engineering, The University of Auckland, Auckland, New Zealand, 10 pp

    Google Scholar 

  • Inglis CC (1949) The behaviour and control of rivers and canals (with the aid of models). Research Publication No. 13, Central Waterpower Irrigation and Navigation Research Station, Poona, India

    Google Scholar 

  • Ismail HM (1952) Turbulent transfer mechanism and suspended sediment in closed channels. Trans ASCE 117:409–434

    Google Scholar 

  • Jackson RG (1976) Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows. J Fluid Mech 77:531–560

    Google Scholar 

  • Jain SC, Kennedy JF (1971) The growth of sand waves. In: Chiu C-L (ed) Stochastic hydraulics. Proceedings of the 1st international symposium on stochastic hydraulics, University of Pittsburgh, Pittsburgh, pp 449–471

    Google Scholar 

  • Jain SC, Kennedy JF (1974) The spectral evolution of sedimentary bed forms. J Fluid Mech 63:301–314

    Google Scholar 

  • Johnson DW (1916) Contributions to the study of ripple marks. J Geol 24(8):809–819

    Google Scholar 

  • Jukes JB (1862) The student’s manual of geology. Adam and Charles Black, Edinburgh, UK

    Google Scholar 

  • Karaki SS, Gray EE, Collins J (1961) Dual channel stream monitor. J Hydraul Div ASCE 87(HY6):1–16

    Google Scholar 

  • Kennedy JF (1963) The mechanics of dunes and antidunes in erodible bed channels. J Fluid Mech 16:521–544

    Google Scholar 

  • Kennedy JF (1969) The formation of sediment ripples, dunes and antidunes. Annu Rev Fluid Mech 1:147–168

    Google Scholar 

  • Kondrat’ev NE, Lyapin AN, Popov IV, Pin’kovskii SI, Fedorov NN, Yakunin II (1959) Channel processes. Gidrometeoizdat, Leningrad

    Google Scholar 

  • Kramer H (1935) Sand mixtures and sand movement in fluvial models. Trans ASCE 100:798–838

    Google Scholar 

  • Lajeunesse E, Malverti L, Lancien P, Armstrong L, Metivier F, Coleman S, Smith CE, Davies T, Cantelli A, Parker G (2010) Fluvial and subaqueous morphodynamics of laminar and near-laminar flows: a synthesis. Sedimentology 57:1–26

    Google Scholar 

  • Levi E (1995) The science of water: the foundation of modern hydraulics. ASCE Press, New York

    Google Scholar 

  • Liu H-K (1957) Mechanics of sediment-ripple formation. J Hydraul Div 2:1–23, Paper 1197

    Google Scholar 

  • Maddux TB, Nelson JM, McLean SR (2003a) Turbulent flow over three-dimensional dunes: 1. Free surface and flow response. J Geophys Res 108(F1). doi:10.1029/2003/JF000017

    Google Scholar 

  • Maddux TB, McLean SR, Nelson JM (2003b) Turbulent flow over three-dimensional dunes: 2. Fluid and bed stresses. J Geophys Res 108(F1). doi:10.1029/2003/JF000018

    Google Scholar 

  • McElroy B, Mohrig D, Blom A (2008) Determining characteristic scales for the dynamics and geometry of sandy bedforms. In: Proceedings of the marine and river dune dynamics, Leeds, UK, 1–3 Apr 2008, pp 219–225

    Google Scholar 

  • McLean SR (1990) The stability of ripples and dunes. Earth Sci Rev 29:131–144

    Google Scholar 

  • McLean SR, Smith JD (1986) A model for flow over two-dimensional bed forms. J Hydraul Eng ASCE 112:300–317

    Google Scholar 

  • Moll JR, Schilperoort T, de Leeuw AJ (1987) Stochastic analysis of bedform dimensions. J Hydraul Res IAHR 25(4):465–479

    Google Scholar 

  • Mu YM (2005) IPT system for a civil engineering flume. In: Proceedings of the 2005 year 4 research projects, Department of Electrical and Computer Engineering, vol 2. The University of Auckland, Auckland, New Zealand, pp 60–67

    Google Scholar 

  • Nairn BJ (1998) Incipient transport of silt-sized sediments. Rep. KH-R-59, WM Keck Laboratory of Hydraulics and Water Resources. California Institute of Technology, Pasadena, California

    Google Scholar 

  • Nakagawa H, Tsujimoto T (1984) Spectral analysis of sand bed instability. J Hydraul Eng ASCE 110(4):467–483

    Google Scholar 

  • Nikora V, Walsh J (2004) Water-worked gravel surfaces: high-order structure functions at the particle scale. Water Resour Res 40:W12601. doi:10.1029/2004WR003346

    Google Scholar 

  • Nikora VI, Sukhodolov AN, Rowinski PM (1997) Statistical sand wave dynamics in one-directional water flows. J Fluid Mech 351:17–39

    Google Scholar 

  • Nikora VI, Goring DG, Biggs BJF (1998) On gravel-bed roughness characterization. Water Resour Res 34(3):517–527

    Google Scholar 

  • Nordin CF (1971) Statistical properties of dune profiles. US Geological Survey Professional Paper 562F, Government Printing Office, Washington, DC

    Google Scholar 

  • Nordin CF, Algert JH (1966) Spectral analysis of sand waves. J Hydraul Div ASCE 92(HY5):95–114

    Google Scholar 

  • Owens JS (1908a) Experiments on the transporting power of sea currents. Geogr J 31(4):415–420

    Google Scholar 

  • Owens JS (1908b) Discussion of ‘Experiments on the transporting power of sea currents’ by JS Owens. Geogr J 31(4):424–425

    Google Scholar 

  • Parsons DR, Best JL, Orfeo O, Hardy RJ, Kostaschuk R, Lane SN (2005) Morphology and flow fields of three-dimensional dunes, Río Paraná, Argentina: results from simultaneous multi-beam echo sounding and acoustic Doppler current profiling. J Geophys Res 110:F04S03. doi:10.1029/2004JF000231

    Google Scholar 

  • Partiot HL (1871) Mémoire sur les sables de la Loire. Ann Ponts Chaussees 5(1):233–292

    Google Scholar 

  • Raudkivi AJ (1963) Study of sediment ripple formation. J Hydraul Div ASCE 89(HY6):15–33

    Google Scholar 

  • Raudkivi AJ (1966) Bed forms in alluvial channels. J Fluid Mech 26(3):507–514

    Google Scholar 

  • Raudkivi AJ (1967) Loose boundary hydraulics, 1st edn. Pergamon, New York

    Google Scholar 

  • Raudkivi AJ (1997) Ripples on stream bed. J Hydraul Eng ASCE 123(1):58–64

    Google Scholar 

  • Raudkivi A, Witte H-H (1990) Development of bed features. J Hydraul Eng ASCE 116(9):1063–1079

    Google Scholar 

  • Reynolds O (1891) Third report of the committee appointed to investigate the action of waves and currents on the beds and foreshores of estuaries by means of working models. British association report

    Google Scholar 

  • Reynolds AJ (1976) A decade’s investigation of the stability of erodible stream beds. Nord Hydrol 7:161–180

    Google Scholar 

  • Richards KJ (1980) The formation of ripples and dunes on an erodible bed. J Fluid Mech 99(3):597–618

    Google Scholar 

  • Richards KS, Robert A (1986) Laboratory experiments with the HR multipurpose profile follower on a rippled sand bed, Department of Geography Working Paper, University of Cambridge, Cambridge, 22 pp

    Google Scholar 

  • Richardson EV, Simons DB, Posakony GJ (1961) Sonic depth sounder for laboratory and field use, US Geological Survey Circular 450, Washington DC

    Google Scholar 

  • Robert A, Richards KS (1988) On the modelling of sand bedforms using the semivariogram. Earth Surf Process Land 13:459–473

    Google Scholar 

  • Saxena M (2005) An inductive power transfer system for flume in Civil Engineering. In: Proceedings of the 2005 year 4 research projects, Department of Electrical and Computer Engineering. vol 2. The University of Auckland, Auckland, New Zealand, pp 51–59

    Google Scholar 

  • Schindler RJ, Robert A (2005) Flow and turbulence structure across the ripple-dune transition: an experiment under mobile bed conditions. Sedimentology 52:627–649

    Google Scholar 

  • Schlicke E, Coleman SE, Nikora VI (2005) A PIV investigation into the interaction between wave motion and sediment ripples. In: 4th IAHR symposium on river, coastal and estuarine morphodynamics, Urbana, 4–7 Oct 2005, pp 981–989

    Google Scholar 

  • Schlicke T, Cameron SM, Coleman SE (2007) Galvanometer-based PIV for liquid flows. Flow Meas Instrum 18:27–36

    Google Scholar 

  • Siau M (1841a) Observations diverses faites en 1839 et 1840, pendant un voyage a l’Ile Bourbon. Comptes rendus de l’academie des sciences XII:774–775

    Google Scholar 

  • Siau M (1841b) Action des vagues à de grandes profondeurs. Annales de chimie et de physique 2(3):118

    Google Scholar 

  • Smart G, Aberle J, Duncan M, Walsh J (2004) Measurement and analysis of alluvial bed roughness. J Hydraul Res IAHR 42(3):227–237

    Google Scholar 

  • Smith JD (1970) Stability of a sand bed subjected to a shear flow of low Froude number. J Geophys Res 75(30):5928–5940

    Google Scholar 

  • Sorby HC (1859) On the structures produced by the currents present during the deposition of stratified rocks. Geologist 2:137–147

    Google Scholar 

  • Straub L (1935) Discussion of ‘Sand mixtures and sand movement in fluvial models’ by H Kramer. Trans ASCE 100:867–873

    Google Scholar 

  • Sumer BM, Bakioglu M (1984) On the formation of ripples on an erodible bed. J Fluid Mech 144:177–190

    Google Scholar 

  • Tison LJ (1949) Origine des ondes de sable et des bancs de sable sous l’action des courants. 3rd congress IAHR, Grenoble, France, Report II-13

    Google Scholar 

  • Tuijnder AP, Ribberink JS, Hulscher SJMH (2009) An experimental study into the geometry of supply-limited dunes. Sedimentology 56(6):1713–1727

    Google Scholar 

  • van der Mark CF, Blom A, Hulscher SJMH, Leclair SF, Mohrig D (2006) On modeling the variability of bedform dimensions. In: 4th IAHR symposium on river, coastal and estuarine morphodynamics, Urbana, 4–7 Oct 2006, pp 831–841

    Google Scholar 

  • van der Mark CF, Blom A, Hulscher SJMH (2008) Quantification of variability in bedform geometry. J Geophys Res 113(10.1029/2007JF000940):F03020. doi:10.1029/2007JF000940

    Google Scholar 

  • van Rijn LC (1984) Sediment transport. Part III: Bed forms and alluvial roughness. J Hydraul Eng ASCE 110(12):1733–1754

    Google Scholar 

  • Velikanov MA (1955) Dynamics of alluvial streams, vol II, Sediment and bed flow. State Publishing House for Theoretical and Technical Literature, Moscow

    Google Scholar 

  • Venditti JG (2007) Turbulent flow and drag over fixed two- and three-dimensional dunes. J Geophys Res 112:F04008. doi:10.1029/2006JF000650

    Google Scholar 

  • Venditti JG, Church MA, Bennett SJ (2005a) Bed form initiation from a flat sand bed. J Geophys Res 110:F01009. doi:10.1029/2004JF000149

    Google Scholar 

  • Venditti JG, Church M, Bennett SJ (2005b) On the transition between 2D and 3D dunes. Sedimentology 52:1343–1359

    Google Scholar 

  • Wang WC, Shen HW (1980) Statistical properties of alluvial bed forms. In: Proceedings of the third international symposium on stochastic hydraulics, Tokyo, Japan, 5–7 Aug 1980, pp 371–389

    Google Scholar 

  • Williams PB, Kemp PH (1971) Initiation of ripples on flat sediment beds. J Hydraul Div ASCE 97(4):505–522

    Google Scholar 

  • Willis JC, Kennedy JF (1980) Sediment transport in migrating bedforms. In: Shen HW, Kikkawa H (eds) Application of stochastic processes in sediment transport. Water Resources Publications, Littleton, pp 6b/1–6b/32

    Google Scholar 

  • Yalin MS (1972) Mechanics of sediment transport. Pergamon, New York

    Google Scholar 

  • Yalin MS (1992) River mechanics. Pergamon Press, New York

    Google Scholar 

  • Yalin MS, da Silva AMF (2001) Fluvial processes. IAHR, Delft, The Netherlands

    Google Scholar 

  • Younkin BD, Hill DF (2009) Rapid profiling of an evolving bed form using planar laser sheet illumination. J Hydraul Eng ASCE 135(10):852–856

    Google Scholar 

Download references

Acknowledgments

I am very grateful to the organising committee of the 30th International School of Hydraulics for their invitation to present this chapter as a lecture. I also acknowledge the support of this committee and the University of Auckland Cross-faculty Research Initiatives Fund to enable my attendance at the school. I wish to thank the colleagues and students who have shared the ideas and adventures leading to the studies described herein, including Bruce Melville, Burkhard Eling, Graeme Twose, Marcelo Garcia, Juan Fedele, Wylie Wong, Rodrigo Musalem, Kirsty Coleman, Vladimir Nikora, Derek Goring, Dougal Clunie, Heide Friedrich, Ted Schlicke, Stuart Cameron, Andries Paarlberg, Joost Lansink, Mark Trevethan, John Cater, Azin Kusari, John Boys, and Grant Covic. In particular, experimental studies are indebted to the technicians who can turn ideas and fancy into reality. In this regard, the present studies have particularly benefitted from the technical skills of Jim Bickner, Ray Hoffman, Gary Carr, Mark Twiname, Jim Luo, and Geoff “Mythbuster” Kirby. The writer’s research discussed in this paper was partly funded by the Marsden Fund (Grant UOA220) administered by the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Coleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coleman, S. (2011). Experimental Investigations of Sandy Riverbed Morphology. In: Rowinski, P. (eds) Experimental Methods in Hydraulic Research. Geoplanet: Earth and Planetary Sciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17475-9_1

Download citation

Publish with us

Policies and ethics