Skip to main content

Some Variations on Constrained Minimum Enclosing Circle Problem

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6508))

  • 893 Accesses

Abstract

Given a set P of n points and a straight line L, we study three important variations of minimum enclosing circle problem. The first problem is on computing k circles of minimum (common) radius with centers on L which can cover the members in P. We propose three algorithms for this problem. The first one runs in O(nklogn) time and O(n) space. The second one runs in O(nk + k 2log3 n) time and O(nlogn) space assuming that the points are sorted along L, and is efficient where k < < n. The third one is based on parametric search and it runs in O(nlogn + klog4 n) time. The next one is on computing the minimum radius circle centered on L that can enclose at least k points. The time and space complexities of the proposed algorithm are O(nk) and O(n) respectively. Finally, we study the situation where the points are associated with k colors, and the objective is to find a minimum radius circle with center on L such that at least one point of each color lies inside it. We propose an O(nlogn) time algorithm for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Sacriston, V.: The farthest color voronoi diagram and related problems. In: 17th European Workshop on Computational Geometry (2001)

    Google Scholar 

  2. Agarwal, P.K., Sharir, M., Welzl, E.: The discrete 2-center problem. In: 13th Annual Symposium on Computational Geometry, pp. 147–155 (1997)

    Google Scholar 

  3. Alt, H., Arkin, E.M., Bronnimann, H., Erickson, J., Fekete, S.P., Knauer, C., Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost Coverage of point sets by disks. In: Proc. 22nd Annual ACM Symposium on Computational Geometry, pp. 449–458 (2006)

    Google Scholar 

  4. Brass, P., Knauer, C., H.-S. Na, C.-S. Shin, Vigneron, A.: Computing k-centers on a line Technical Report CoRR abs/0902.3282 (2009)

    Google Scholar 

  5. Bose, P., Wang, Q.: Facility location constrained to a polygonal domain. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 153–164. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Chan, T.M.: More planar two-center algorithms. Computational Geometry: Theory and Applications 13, 189–198 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cole, R., Salowe, J., Steiger, W., Szemeredi, E.: An optimal-time algorithm for slope selection. SIAM Journal on Computing 18, 792–810 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. ACM 34, 200–208 (1987)

    Article  MathSciNet  Google Scholar 

  9. Gupta, U.I., Lee, D.T., Leung, J.Y.-T.: Efficient algorithms for interval graphs and circular-arc graphs. Networks 12, 459–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hwang, R.Z., Chang, R.C., Lee, R.C.T.: The searching over separators strategy To solve some NP-hard problems in subexponential time. Algorithmica 9, 398–423 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Computational Geometry 9, 267–291 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hurtado, F., Sacristan, V., Toussaint, G.: Facility location problems with constraints. Studies in Locational Analysis 15, 17–35 (2000)

    MATH  Google Scholar 

  13. Hochbaum, D.S., Shmoys, D.: A best possible heuristic for the k- center problem. Mathematics of Operations Research 10, 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karmakar, A., Roy, S., Das, S.: Fast computation of smallest enclosing circle with center on a query line segment. Information Processing Letters 108, 343–346 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, S.K., Shin, C.S.: Efficient algorithms for two-center problems for a convex polygon. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 299–309. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Marchetti-Spaccamela, A.: The p-center problem in the plane is NP-complete. In: Proc. 19th Allerton Conf. on Communication, Control and Computing, pp. 31–40 (1981)

    Google Scholar 

  17. Matousek, J.: Randomized optimal algorithm for slope selection. Information Processing Letters 39, 183–187 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Megiddo, N.: Linear-time algorithms for linear programming in R 3 and related problems. SIAM Journal Comput. 12, 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Olariu, S., Schwing, J.L., Zhang, J.: Optimal parallel algorithms for problems modeled by a family of intervals. IEEE Transactions on Parallel and Distributed Systems 3, 364–374 (1992)

    Article  Google Scholar 

  20. Plesnik, J.: A heuristic for the p-center problem in graphs. Discrete Applied Mathematics 17, 263–268 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sharir, M.: A near-linear algorithm for the planar 2-center problem. Discrete Computational Geometry 18, 125–134 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roy, S., Karmakar, A., Das, S., Nandy, S.C.: Constrained minimum enclosing circle with center on a query line Segment. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 765–776. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Vahrenhold, J.: Line-segment intersection made in-place. Computational Geometry: Theory and Applications 38, 213–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karmakar, A., Das, S., Nandy, S.C., Bhattacharya, B.K. (2010). Some Variations on Constrained Minimum Enclosing Circle Problem. In: Wu, W., Daescu, O. (eds) Combinatorial Optimization and Applications. COCOA 2010. Lecture Notes in Computer Science, vol 6508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17458-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17458-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17457-5

  • Online ISBN: 978-3-642-17458-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics