Skip to main content

The Strategies of the Genes: Genomic Conflicts, Attachment Theory, and Development of the Social Brain

  • Chapter
  • First Online:
Brain, Behavior and Epigenetics

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

I describe and evaluate the hypothesis that effects of parent–offspring conflict and genomic imprinting on human neurodevelopment and behavior are central to evolved systems of mother–child attachment. The psychological constructs of Bowlby’s attachment theory provide phenomenological descriptions of how attachment orchestrates affective-cognitive development, and patterns of imprinted-gene expression and coexpression provide evidence of epigenetic and evolutionary underpinnings to human growth and neurodevelopment. Social-environmental perturbations to the development of normally secure attachment, and alterations to evolved systems of parent–offspring conflict and imprinted-gene effects, are expected to lead to specific forms of maladaptation, manifest in psychiatric conditions affecting social-brain development. In particular, underdevelopment of the social brain in autism may be mediated in part by mechanisms that lead to physically enhanced yet psychologically underdeveloped attachment to the mother, and affective-psychotic conditions, such as schizophrenia and depression, may be mediated in part by forms of insecure attachment and by increased relative effects of the maternal brain, both directly from mothers and via imprinted-gene effects in offspring. These hypotheses are concordant with findings from epidemiology, attachment theory, psychiatry, and genetic and epigenetic analyses of risk factors for autism and affective-psychotic conditions, they make novel predictions for explaining the causes of psychosis in Prader–Willi syndrome and idiopathic schizophrenia, and they suggest avenues for therapeutic interventions based on normalizing alterations to epigenetic networks and targeting public-health interventions toward reduction of perturbations to the development of secure attachment in early childhood and individuation during adolescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355

    Article  PubMed  CAS  Google Scholar 

  • Allen ND, Logan K, Lally G et al (1995) Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc Natl Acad Sci USA 92:10782–10786

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC, Wood MD, Tunster SJ et al (2007) Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev Biol 7:53

    Article  PubMed  CAS  Google Scholar 

  • Angiolini E, Fowden A, Coan P et al (2006) Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27:S98–S102

    Article  PubMed  CAS  Google Scholar 

  • Anglin DM, Cohen PR, Chen H (2008) Duration of early maternal separation and prediction of schizotypal symptoms from early adolescence to midlife. Schizophr Res 103:143–150

    Article  PubMed  Google Scholar 

  • Arima T, Kamikihara T, Hayashida T et al (2005) ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res 33:2650–2660

    Article  PubMed  CAS  Google Scholar 

  • Arking DE, Cutler DJ, Brune CW et al (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82:160–164

    Article  PubMed  CAS  Google Scholar 

  • Badcock C (2009) The imprinted brain. Jessica Kingsley, London

    Google Scholar 

  • Badcock C, Crespi B (2006) Imbalanced genomic imprinting in brain development: an evolutionary basis for the aetiology of autism. J Evol Biol 19:1007–1032

    Article  PubMed  CAS  Google Scholar 

  • Baqir S, Smith LC (2006) Inhibitors of histone deacetylases and DNA methyltransferases alter imprinted gene regulation in embryonic stem cells. Cloning Stem Cells 8:200–213

    Article  PubMed  CAS  Google Scholar 

  • Barr CS, Schwandt ML, Lindell SG, Higley JD, Maestripieri D, Goldman D, Suomi SJ, Heilig M (2008) Variation at the mu-opioid receptor gene (OPRM1) influences attachment behavior in infant primates. Proc Natl Acad Sci USA 105:5277–5281

    Article  PubMed  CAS  Google Scholar 

  • Bartz JA, Hollander E (2008) Oxytocin and experimental therapeutics in autism spectrum disorders. Prog Brain Res 170:451–462

    Article  PubMed  CAS  Google Scholar 

  • Berry K, Wearden AJ, Barrowclough C, Liversidge T (2006) Attachment styles, interpersonal relationships and psychotic phenomena in a non-clinical student sample. Pers Indiv Diff 41:707–718

    Article  Google Scholar 

  • Berry K, Barrowclough C, Wearden A (2007) A review of the role of adult attachment style in psychosis: unexplored issues and questions for further research. Clin Psychol Rev 27:458–745

    Article  PubMed  Google Scholar 

  • Berry K, Barrowclough C, Wearden A (2008) Attachment theory: a framework for understanding symptoms and interpersonal relationships in psychosis. Behav Res Ther 46:1275–1282

    Article  PubMed  Google Scholar 

  • Blissett J, Harris G, Kirk J (2001) Feeding problems in Silver-Russell syndrome. Dev Med Child Neurol 43:39–44

    Article  PubMed  CAS  Google Scholar 

  • Bonati MT, Russo S, Finelli P et al (2007) Evaluation of autism traits in Angelman syndrome: a resource to unfold autism genes. Neurogenetics 8:169–178

    Article  PubMed  CAS  Google Scholar 

  • Bowlby J (1951) Maternal care and mental health. Schocken, New York

    Google Scholar 

  • Bowlby J (1969) Attachment and loss: attachment, vol 1. Basic Books, New York

    Google Scholar 

  • Bressan FF, De Bem TH, Perecin F et al (2009) Unearthing the roles of imprinted genes in the placenta. Placenta 30:823–834

    Article  PubMed  CAS  Google Scholar 

  • Bretherton I (1992) The origins of attachment theory: John Bowlby and Mary Ainsworth. Devel Psychol 28:759–775

    Article  Google Scholar 

  • Bretherton I (1997) Bowlby’s legacy to developmental psychology. Child Psychiatry Hum Dev 28:33–43

    Article  PubMed  CAS  Google Scholar 

  • Brose N (2009) Synaptogenic proteins and synaptic organizers: “many hands make light work”. Neuron 61:650–652

    Article  PubMed  CAS  Google Scholar 

  • Brown WM, Consedine NS (2004) Just how happy is the happy puppet? An emotion signaling and kinship theory perspective on the behavioral phenotype of children with Angelman syndrome. Med Hypotheses 63:377–385

    Article  PubMed  Google Scholar 

  • Burt A, Trivers RL (2006) Genes in conflict: the biology of selfish genetic elements. Belknap, Cambridge

    Google Scholar 

  • Champagne FA, Curley JP, Swaney WT et al (2009) Paternal influence on female behavior: the role of Peg3 in exploration, olfaction, and neuroendocrine regulation of maternal behavior of female mice. Behav Neurosci 123:469–480

    Article  PubMed  Google Scholar 

  • Charalambous M, da Rocha ST, Ferguson-Smith AC (2007) Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr Opin Endocrinol Diabetes Obes 14:3–12

    Article  PubMed  CAS  Google Scholar 

  • Chetcuti A, Adams LJ, Mitchell PB, Schofield PR (2006) Altered gene expression in mice treated with the mood stabilizer sodium valproate. Int J Neuropsychopharmacol 9:267–276

    Article  PubMed  CAS  Google Scholar 

  • Cohen MM Jr (2005) Beckwith-Wiedemann syndrome: historical, clinicopathological, and etiopathogenetic perspectives. Pediatr Dev Pathol 8:287–304

    Article  PubMed  Google Scholar 

  • Cohen D, Pichard N, Tordjman S et al (2005) Specific genetic disorders and autism: clinical contribution towards their identification. J Autism Dev Disord 35:103–116

    Article  PubMed  Google Scholar 

  • Crespi B (2008a) Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biol Rev Camb Philos Soc 83:441–493

    PubMed  Google Scholar 

  • Crespi B (2008b) Turner syndrome and the evolution of human sexual dimorphism. Evol Appl 1:449–461

    Article  Google Scholar 

  • Crespi B (2010) The origins and evolution of genetic disease risk in modern humans. Ann N Y Acad Sci 1206:80–109

    Article  PubMed  Google Scholar 

  • Crespi B, Badcock C (2008) Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 31:241–261, discussion 261–320

    PubMed  Google Scholar 

  • Crespi B, Summers K, Dorus S (2009) Genomic sister-disorders of neurodevelopment: an evolutionary approach. Evol Appl 2:81–100

    Article  Google Scholar 

  • Crespi B, Stead P, Elliot M (2010) Comparative genomics of autism and schizophrenia. Proc Natl Acad Sci USA 107 Suppl 1:1736–1741

    Article  PubMed  CAS  Google Scholar 

  • Curley JP, Barton S, Surani A, Keverne EB (2004) Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc Biol Sci 271:1303–1309

    Article  PubMed  Google Scholar 

  • Davies W, Isles AR, Humby T, Wilkinson LS (2008a) What are imprinted genes doing in the brain? Adv Exp Med Biol 626:62–70

    Article  PubMed  CAS  Google Scholar 

  • Davies W, Lynn PM, Relkovic D, Wilkinson LS (2008b) Imprinted genes and neuroendocrine function. Front Neuroendocrinol 29:413–427

    Article  PubMed  CAS  Google Scholar 

  • Dudley O, Muscatelli F (2007) Clinical evidence of intrauterine disturbance in Prader–Willi syndrome, a genetically imprinted neurodevelopmental disorder. Early Hum Dev 83:471–478

    Article  PubMed  Google Scholar 

  • Dufour-Rainfray D, Vourc’h P, Le Guisquet AM et al (2010) Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci Lett 470:55–59

    Article  PubMed  CAS  Google Scholar 

  • Eggermann T (2009) Silver-Russell and Beckwith-Wiedemann syndromes: opposite (epi)mutations in 11p15 result in opposite clinical pictures. Horm Res 71(Suppl 2):30–35

    Article  PubMed  CAS  Google Scholar 

  • Eggermann T, Eggermann K, Schönherr N (2008) Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet 24:195–204

    Article  PubMed  CAS  Google Scholar 

  • Emlen ST (1995) An evolutionary theory of the family. Proc Natl Acad Sci USA 92:8092–8099

    Article  PubMed  CAS  Google Scholar 

  • Emlen ST (1997) The evolutionary study of human family systems. Soc Sci Inf 36:563–589

    Article  Google Scholar 

  • Fauque P, Ripoche MA, Tost J et al (2010) Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos. Hum Mol Genet 19:1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Fernyhough C (1996) The dialogic mind: a dialogic approach to the higher mental functions. New Ideas In Psychol 14:47–62

    Article  Google Scholar 

  • Fernyhough C (2004) Alien voices and inner dialogue: towards a developmental account of auditory verbal hallucinations. New Ideas In Psychol 22:49–68

    Article  Google Scholar 

  • Feuk L, Kalervo A, Lipsanen-Nyman M et al (2006) Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am J Hum Genet 79:965–972

    Article  PubMed  CAS  Google Scholar 

  • Fox M, Sear R, Beise J et al (2010) Grandma plays favourites: X-chromosome relatedness and sex-specific childhood mortality. Proc Biol Sci 277:567–573

    Article  PubMed  Google Scholar 

  • Francks C, Maegawa S, Laurén J et al (2007) LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry 12:1129–1139, 1057

    Article  PubMed  CAS  Google Scholar 

  • Frith CD (2008) Social cognition. Philos Trans R Soc Lond B Biol Sci 363:2033–2039

    Article  PubMed  Google Scholar 

  • Gabory A, Ripoche MA, Le Digarcher A et al (2009) H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136:3413–3421

    Article  PubMed  CAS  Google Scholar 

  • Garon N, Bryson SE, Zwaigenbaum L et al (2009) Temperament and its relationship to autistic symptoms in a high-risk infant sib cohort. J Abnorm Child Psychol 37:59–78

    Article  PubMed  Google Scholar 

  • Geneviève D, Sanlaville D, Faivre L et al (2005) Paternal deletion of the GNAS imprinted locus (including Gnasxl) in two girls presenting with severe pre- and post-natal growth retardation and intractable feeding difficulties. Eur J Hum Genet 13:1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Gibson MA, Mace R (2003) Strong mothers bear more sons in rural Ethiopia. Proc Biol Sci 270(suppl 1):S108–S109

    Article  PubMed  Google Scholar 

  • Goldstone AP (2006) The hypothalamus, hormones, and hunger: alterations in human obesity and illness. Prog Brain Res 153:57–73

    Article  PubMed  CAS  Google Scholar 

  • Green L, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 50:609–613

    Article  PubMed  CAS  Google Scholar 

  • Gregory SG, Connelly JJ, Towers AJ et al (2009) Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med 7:62

    Article  PubMed  CAS  Google Scholar 

  • Grossmann T, Johnson MH, Lloyd-Fox S et al (2008) Early cortical specialization for face-to-face communication in human infants. Proc Biol Sci 275:2803–2811

    Article  PubMed  Google Scholar 

  • Gumley AI, Schwannauer M, MacBeth A, Read J (2008) Emotional recovery and staying well after psychosis: an attachment based conceptualisation. Attachment 2:127–148

    Google Scholar 

  • Haig D (1993) Genetic conflicts in human pregnancy. Q Rev Biol 68:495–532

    Article  PubMed  CAS  Google Scholar 

  • Haig D (1997) The social gene. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, London, pp 284–304

    Google Scholar 

  • Haig D (2002) Genomic imprinting and kinship. Rutgers University Press, New Brunswick, NJ

    Google Scholar 

  • Haig D (2004a) The (dual) origin of epigenetics. Cold Spring Harb Symp Quant Biol 69:1–4

    Article  Google Scholar 

  • Haig D (2004b) Genomic imprinting and kinship: how good is the evidence? Annu Rev Genet 38:553–585

    Article  PubMed  CAS  Google Scholar 

  • Haig D (2006a) Intragenomic politics. Cytogenet Genome Res 113:68–74

    Article  PubMed  CAS  Google Scholar 

  • Haig D (2006b) Intrapersonal conflict. In: Jones MK, Fabian AC (eds) Conflict. Cambridge University Press, Cambridge, pp 8–22

    Chapter  Google Scholar 

  • Haig D (2009) Transfers and transitions: Parent–offspring conflict, genomic imprinting, and the evolution of human life history. Proc Natl Acad Sci USA 107:1731–1735

    Article  PubMed  Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor-II receptor. Cell 64:1045–1046

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Wharton R (2003) Prader–Willi syndrome and the evolution of human childhood. Am J Hum Biol 15:320–329

    Article  PubMed  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour I and II. J Theor Biol 7:1–16, 17–52

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD (1996) Narrow roads of gene land vol. 1: Evolution of social behaviour. Oxford University Press, Oxford. ISBN 0-7167-4530-5

    Google Scholar 

  • Happé F (1994) Autism: an introduction to psychological theory. UCL Press, London

    Google Scholar 

  • Harrop C, Trower P (2001) Why does schizophrenia develop at late adolescence? Clin Psychol Rev 21:241–265

    Article  PubMed  CAS  Google Scholar 

  • Hinde CA, Kilner RM (2007) Negotiations within the family over the supply of parental care. Proc Biol Sci 274:53–60

    Article  PubMed  Google Scholar 

  • Hoffman CD, Sweeney DP, Hodge D (2009) Parenting stress and closeness in mothers of typically developing children and mothers of children with autism. Focus on Autism and other Developmental Disabilities 24:178–187

    Article  Google Scholar 

  • Holland A, Whittington J, Hinton E (2003) The paradox of Prader–Willi syndrome: a genetic model of starvation. Lancet 362:989–991

    Article  PubMed  CAS  Google Scholar 

  • Höybye C (2004) Endocrine and metabolic aspects of adult Prader–Willi syndrome with special emphasis on the effect of growth hormone treatment. Growth Horm IGF Res 14:1–15

    Article  PubMed  CAS  Google Scholar 

  • Hrdy S (1999) Mother nature: a history of mothers, infants, and natural selection. Pantheon Books, New York

    Google Scholar 

  • Hrdy S (2009) Mothers and others: the evolutionary origins of mutual understanding. Harvard University Press, Harvard

    Google Scholar 

  • Humphrey LT (2009) Weaning behaviour in human evolution. Semin Cell Dev Biol 21:453–461

    Article  PubMed  Google Scholar 

  • Insel TR (2003) Is social attachment an addictive disorder? Physiol Behav 79:351–357

    Article  PubMed  CAS  Google Scholar 

  • Isles AR, Holland AJ (2005) Imprinted genes and mother-offspring interactions. Early Hum Dev 81:73–77

    Article  PubMed  Google Scholar 

  • Isles AR, Baum MJ, Ma D, Szeto A, Keverne EB, Allen ND (2002) A possible role for imprinted genes in inbreeding avoidance and dispersal from the natal area in mice. Proc Biol Sci 269:665–670

    Article  PubMed  Google Scholar 

  • Isles AR, Davies W, Wilkinson LS (2006) Genomic imprinting and the social brain. Philos Trans R Soc Lond B Biol Sci 361:2229–2237

    Article  PubMed  CAS  Google Scholar 

  • Jansen LMC, Gispen-de Wied CC, Wiegant VM (2006) Autonomic and neuroendocrine responses to a psychosocial stressor in adults with autistic spectrum disorder. J Autism Devel Dis 36:891–899

    Article  Google Scholar 

  • Jedele KB (2007) The overlapping spectrum of Rett and Angelman syndromes: a clinical review. Semin Pediatr Neurol 14:108–117

    Article  PubMed  Google Scholar 

  • Joseph B, Wallén-Mackenzie A, Benoit G et al (2003) p57(Kip2) cooperates with Nurr1 in developing dopamine cells. Proc Natl Acad Sci USA 100:15619–15624

    Article  PubMed  CAS  Google Scholar 

  • Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250

    Google Scholar 

  • Kelsey G (2007) Genomic imprinting – roles and regulation in development. Endocr Dev 12:99–112

    Article  PubMed  CAS  Google Scholar 

  • Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MR, Bérubé NG (2010) ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev Cell 18:191–202

    Article  PubMed  CAS  Google Scholar 

  • Keverne EB (2001a) Genomic imprinting and the maternal brain. Prog Brain Res 133:279–285

    Article  PubMed  CAS  Google Scholar 

  • Keverne EB (2001b) Genomic imprinting, maternal care, and brain evolution. Horm Behav 40:146–155

    Article  PubMed  CAS  Google Scholar 

  • Keverne EB, Fundele R, Narasimha M et al (1996) Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res Dev Brain Res 92:91–100

    Article  PubMed  CAS  Google Scholar 

  • Laing RD, Esterson A (1970) Sanity, madness and the family. Tavistock, London

    Google Scholar 

  • Lemire M (2005) A simple nonparametric multipoint procedure to test for linkage through mothers or fathers as well as imprinting effects in the presence of linkage. BMC Genet 6(6 Suppl 1):S159

    Article  PubMed  CAS  Google Scholar 

  • Le-Niculescu H, Balaraman Y, Patel S et al (2007) Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 144B:129–158

    Article  PubMed  CAS  Google Scholar 

  • Ling JQ, Hoffman AR (2007) Epigenetics of long-range chromatin interactions. Pediatr Res 61:11R–16R

    Article  PubMed  Google Scholar 

  • Liotti L, Gumley A (2008) An attachment perspective on schizophrenia: the role of disorganized attachment, dissociation and mentalization. In: Moskowitz A, Schafer I, Dorahy MJ (eds) Psychosis, trauma and dissociation. Wiley, New York, pp 117–133

    Chapter  Google Scholar 

  • Liu Z, Li X, Ge X (2009) Left too early: the effects of age at separation from parents on Chinese rural children’s symptoms of anxiety and depression. Am J Public Health 99:2049–2054

    Article  PubMed  Google Scholar 

  • Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ (2007) Computational and experimental identification of novel human imprinted genes. Genome Res 17:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Lui JC, Finkielstain GP, Barnes KM, Baron J (2008) An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am J Physiol Regul Integr Comp Physiol 295:R189–R196

    Article  PubMed  CAS  Google Scholar 

  • Lyons-Ruth K (2008) Contributions of the mother–infant relationship to dissociative, borderline, and conduct symptoms in young adulthood. Infant Ment Health J 29:203–218

    Article  PubMed  Google Scholar 

  • Macdonald K, Macdonald TM (2010) The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans. Harv Rev Psychiatry 18:1–21

    Article  PubMed  Google Scholar 

  • Maestripieri D (2002) Parent–offspring conflict in primates. Int J Primatol 23:923–951

    Article  Google Scholar 

  • Mague SD, Blendy JA (2010) OPRM1 SNP (A118G): Involvement in disease development, treatment response, and animal models. Drug Alcohol Depend 108:172–182

    Article  PubMed  CAS  Google Scholar 

  • Manaye KF, Lei DL, Tizabi Y et al (2005) Selective neuron loss in the paraventricular nucleus of hypothalamus in patients suffering from major depression and bipolar disorder. J Neuropathol Exp Neurol 64:224–229

    PubMed  Google Scholar 

  • McMinn J, Wei M, Schupf N et al (2006) Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta 27:540–549

    Article  PubMed  CAS  Google Scholar 

  • Miyano M, Horike S, Cai S, Oshimura M, Kohwi-Shigematsu T (2008) DLX5 expression is monoallelic and Dlx5 is up-regulated in the Mecp2-null frontal cortex. J Cell Mol Med 12:1188–1191

    Article  PubMed  CAS  Google Scholar 

  • Modahl C, Green L, Fein D et al (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43:270–277

    Article  PubMed  CAS  Google Scholar 

  • Moriceau S, Sullivan RM (2005) Neurobiology of infant attachment. Dev Psychobiol 47:230–242

    Article  PubMed  Google Scholar 

  • Oliver C, Horsler K, Berg K et al (2007) Genomic imprinting and the expression of affect in Angelman syndrome: what’s in the smile? J Child Psychol Psychiatry 48:571–579

    Article  PubMed  Google Scholar 

  • Owen MJ, Craddock N, Jablensky A (2007) The genetic deconstruction of psychosis. Schizophr Bull 33:905–911

    Article  PubMed  Google Scholar 

  • Pesonen AK, Räikkönen K, Heinonen K et al (2007) Depressive symptoms in adults separated from their parents as children: a natural experiment during World War II. Am J Epidemiol 166:1126–1133

    Article  PubMed  Google Scholar 

  • Pickering L, Simpson J, Bentall RP (2008) Insecure attachment predicts proneness to paranoia but not hallucinations. Pers Individ Diff 44:1212–1224

    Article  Google Scholar 

  • Plagge A, Gordon E, Dean W et al (2004) The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat Genet 36:818–826

    Article  PubMed  CAS  Google Scholar 

  • Plagge A, Isles AR, Gordon E et al (2005) Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol 25:3019–3026

    Article  PubMed  CAS  Google Scholar 

  • Read J, Gumley AI (2008) Can attachment theory help explain the relationship between childhood adversity and psychosis? Attachment: New Directions in Psychotherapy and Relational Psychoanalysis 2:1–35

    Google Scholar 

  • Read J, Seymour F, Mosher LR (2004a) Unhappy families. In: Read J, Bentall R, Mosher L (eds) Models of madness: psychological, social and biological approaches to schizophrenia. Brunner-Routledge, Hove, England, pp 253–268

    Chapter  Google Scholar 

  • Read J, Mosher L, Bentall R (2004b) Models of madness: psychological, social and biological approaches to schizophrenia. Routledge, Basingstoke, UK

    Book  Google Scholar 

  • Reik W, Davies K, Dean W et al (2001) Imprinted genes and the coordination of fetal and postnatal growth in mammals. Novartis Found Symp 237:19–31, discussion 31–42

    Article  PubMed  CAS  Google Scholar 

  • Renfree MB, Hore TA, Shaw G et al (2009) Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet 10:241–262

    Article  PubMed  CAS  Google Scholar 

  • Richard DJ, Schumacher V, Royer-Pokora B, Roberts SG (2001) Par4 is a coactivator for a splice isoform-specific transcriptional activation domain in WT1. Genes Dev 15:328–339

    Article  PubMed  CAS  Google Scholar 

  • Rickard IJ, Russell AF, Lummaa V (2007) Producing sons reduces lifetime reproductive success of subsequent offspring in pre-industrial Finns. Proc Biol Sci 274:2981–2988

    Article  PubMed  Google Scholar 

  • Rinaldi T, Perrodin C, Markram H (2008) Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Front Neural Circuits 2:4

    Article  PubMed  CAS  Google Scholar 

  • Ross HE, Young LJ (2009) Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol 30:534–547

    Article  PubMed  CAS  Google Scholar 

  • Royle NJ, Hartley IR, Parker GA (2004) Parental investment and family dynamics: interactions between theory and empirical tests. Pop Ecol 46:231–241

    Article  Google Scholar 

  • Rutgers AH, Bakermans-Kranenburg MJ, van Ijzendoorn MH, van Berckelaer-Onnes IA (2004) Autism and attachment: a meta-analytic review. J Child Psychol Psychiatry 45:1123–1134

    Article  PubMed  Google Scholar 

  • Rutter M, Kreppner J, Sonuga-Barke E (2009) Emanuel Miller Lecture: attachment insecurity, disinhibited attachment, and attachment disorders: where do research findings leave the concepts? J Child Psychol Psychiatry 50:529–543

    Article  PubMed  Google Scholar 

  • Sahoo T, Peters SU, Madduri NS et al (2006) Microarray based comparative genomic hybridization testing in deletion bearing patients with Angelman syndrome: genotype-phenotype correlations. J Med Genet 43:512–516

    Article  PubMed  CAS  Google Scholar 

  • Sandhu KS, Shi C, Sjölinder M et al (2009) Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes Dev 23:2598–2603

    Article  PubMed  CAS  Google Scholar 

  • Sellen DW (2007) Evolution of infant and young child feeding: implications for contemporary public health. Annu Rev Nutr 27:123–148

    Article  PubMed  CAS  Google Scholar 

  • Serý O, Prikryl R, Castulík L, St’astný F (2010) A118G polymorphism of OPRM1 gene is associated with schizophrenia. J Mol Neurosci 41:219–222

    Article  PubMed  CAS  Google Scholar 

  • Shaver PR, Mikulincer M (2002) Attachment-related psychodynamics. Attach Hum Dev 4:133–161

    Article  PubMed  Google Scholar 

  • Sigurdsson MI, Jamshidi N, Jonsson JJ, Palsson BO (2009) Genome-scale network analysis of imprinted human metabolic genes. Epigenetics 4:43–46

    Article  PubMed  CAS  Google Scholar 

  • Smiseth PT, Wright J, Kölliker M (2008) Parent–offspring conflict and co-adaptation: behavioural ecology meets quantitative genetics. Proc Biol Sci 275:1823–1830

    Article  PubMed  Google Scholar 

  • Smits G, Kelsey G (2006) Imprinting weaves its web. Dev Cell 11:598–599

    Article  PubMed  CAS  Google Scholar 

  • Soltis J (2004) The signal functions of early infant crying. Behav Brain Sci 27:443–458, discussion 459–490

    PubMed  Google Scholar 

  • Soni S, Whittington J, Holland AJ et al (2008) The phenomenology and diagnosis of psychiatric illness in people with Prader–Willi syndrome. Psychol Med 38:1505–1514

    PubMed  CAS  Google Scholar 

  • Strathearn L, Li J, Fonagy P, Montague PR (2008) What's in a smile? Maternal brain responses to infant facial cues. Pediatrics 122:40–51

    Article  PubMed  Google Scholar 

  • Strauss KA, Puffenberger EG, Huentelman MJ et al (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354:1370–1377

    Article  PubMed  CAS  Google Scholar 

  • Surbey MK (1998) Parent and offspring strategies in the transition at adolescence. Hum Nat 9:67–94

    Article  Google Scholar 

  • Swaab DF, Purba JS, Hofman MA (1995) Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader–Willi syndrome: a study of five cases. J Clin Endocrinol Metab 80:573–579

    Article  PubMed  CAS  Google Scholar 

  • Tamimi RM, Lagiou P, Mucci LA et al (2003) Average energy intake among pregnant women carrying a boy compared with a girl. Br Med J 326:1245–1246

    Article  Google Scholar 

  • Thompson RA (2008) Attachment-related mental representations: introduction to the special issue. Attach Hum Devel 10:347–358

    Article  Google Scholar 

  • Tiliopoulos N, Goodall K (2009) The neglected link between adult attachment and schizotypal personality traits. Pers Individ Diff 47:299–304

    Article  Google Scholar 

  • Torkamani A, Dean B, Schork NJ, Thomas EA (2010) Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Res 20:403–412

    Article  PubMed  CAS  Google Scholar 

  • Trivers RL (1974) Parent–offspring conflict. Am Zool 14:249–264

    Google Scholar 

  • Tsai TF, Armstrong D, Beaudet AL (1999) Necdin-deficient mice do not show lethality or the obesity and infertility of Prader–Willi syndrome. Nat Genet 22:15–16

    Article  PubMed  CAS  Google Scholar 

  • Tyrka AR, Wier L, Price LH et al (2008) Childhood parental loss and adult psychopathology: effects of loss characteristics and contextual factors. Int J Psychiatry Med 38:329–344

    Article  PubMed  Google Scholar 

  • van Ijzendoorn MH, Rutgers AH, Bakermans-Kranenburg MJ et al (2007) Parental sensitivity and attachment in children with autism spectrum disorder: comparison with children with mental retardation, with language delays, and with typical development. Child Dev 78:597–608

    Article  PubMed  Google Scholar 

  • Varrault A, Gueydan C, Delalbre A et al (2006) Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 11:711–722

    Article  PubMed  CAS  Google Scholar 

  • Vecsler M, Simon AJ, Amariglio N et al (2010) MeCP2 deficiency downregulates specific nuclear proteins that could be partially recovered by valproic acid in vitro. Epigenetics 5:61–67

    Article  PubMed  CAS  Google Scholar 

  • Vernes SC, Newbury DF, Abrahams BS et al (2008) A functional genetic link between distinct developmental language disorders. N Engl J Med 359:2337–2345

    Article  PubMed  CAS  Google Scholar 

  • Waddington C (1957) The strategy of the genes. Macmillan, New York

    Google Scholar 

  • Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361

    Article  PubMed  CAS  Google Scholar 

  • Wagschal A, Feil R (2006) Genomic imprinting in the placenta. Cytogenet Genome Res 113:90–98

    Article  PubMed  CAS  Google Scholar 

  • Way BM, Taylor SE, Eisenberger NI (2009) Variation in the mu-opioid receptor gene (OPRM1) is associated with dispositional and neural sensitivity to social rejection. Proc Natl Acad Sci USA 106:15079–15084

    Article  PubMed  CAS  Google Scholar 

  • Webb T, Maina EN, Soni S et al (2008) In search of the psychosis gene in people with Prader–Willi syndrome. Am J Med Genet A 146:843–853

    PubMed  Google Scholar 

  • Weinstein LS, Liu J, Sakamoto A et al (2004) Minireview: GNAS: normal and abnormal functions. Endocrinology 145:5459–5464

    Article  PubMed  CAS  Google Scholar 

  • Wells JC (2003) Parent–offspring conflict theory, signaling of need, and weight gain in early life. Q Rev Biol 78:169–202

    Article  PubMed  Google Scholar 

  • Wilkinson LS, Davies W, Isles AR (2007) Genomic imprinting effects on brain development and function. Nat Rev Neurosci 8:832–843

    Article  PubMed  CAS  Google Scholar 

  • Wilson JS, Costanzo PR (1996) A preliminary study of attachment, attention, and schizotypy in early adulthood. J Soc Clin Psychol 15:231–260

    Article  CAS  Google Scholar 

  • Zhao Z, Tavoosidana G, Sjölinder M et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Christopher Badcock, David Haig, Sarah Hrdy, and Felicity Larson for comments, and Paul Pavlidis for advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard J. Crespi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crespi, B.J. (2011). The Strategies of the Genes: Genomic Conflicts, Attachment Theory, and Development of the Social Brain. In: Petronis, A., Mill, J. (eds) Brain, Behavior and Epigenetics. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17426-1_8

Download citation

Publish with us

Policies and ethics