Advertisement

Chemistry of POPs in the Atmosphere

  • Wolf-Ulrich PalmEmail author
Chapter
  • 921 Downloads

Abstract

The discovery of the insecticidal properties of DDT by Paul Müller (Läuger et al. 1944; DDT was synthesized more than 50 years ago (Zeidler 1874) can be deemed as one of the starting points of intensive search of organic compounds to be used as pesticides. These organic compounds were – and are – used and applied deliberately especially in the environment due to their properties as poisons against plants, fungi or insects. However, already in the beginning of the 1950s of the last century the persistence (i.e., high lifetime) of these compounds in the environment was realized and culminated 1962 in the publication of ‘Silent Spring’ by Carson (2000; Marco et al. 1987). Besides these highly chlorinated pesticides of the first generation, high amounts of chemically bad characterized mixtures such as polychlorinated biphenyls (PCB) were often used. Although these substances and further byproducts, such as chlorinated dibenzodioxins and dibenzofurans (as far as we know never used commercially), are from a chemical point of view not a homogenous group, besides other general properties, they are man-made and known to be at least persistent in the environment. As a consequence, these organic compounds were termed Persistent Organic Pollutants (POP).

Keywords

Stockholm Convention PBDE Congener Chlorinate Pesticide Abiotic Degradation Adsorbed Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Al-Alawi, M., 2008: Dioxin characterisation, formation, and minimisation. In: E. Mehmetli and B. Koumanova (Eds.), The Fate of Persistent Organic Pollutants in the Environment, pp. 269–282. Springer, Berlin.Google Scholar
  2. Ananthula, R., T. Yamada, and P.H. Taylor, 2006: Kinetics of OH radical reaction with anthracene and anthracene-d(10). J. Phys. Chem. A 110, 3559–3566.Google Scholar
  3. Anderson, P.N., and R.A. Hites, 1996: OH radical reactions: the major removal pathway for polychlorinated biphenyls from the atmosphere. Environ. Sci. Technol. 30, 1756–1763.Google Scholar
  4. ASTM, 1987: Standard Test Method for Conducting Aqueous Direct Photolysis Tests (E 896-87). American Society for Testing and Materials, Philadelphia.Google Scholar
  5. Atkinson R., and W.P.L. Carter, 1984: Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 84, 437–470.Google Scholar
  6. Atkinson, R. and S.M. Aschmann, 1985: Rate constants for the gas-phase reaction of hydroxyl radicals with biphenyl and the monochlorobiphenyls at 295 ± 1 K. Environ. Sci. Technol. 19, 462–464.Google Scholar
  7. Atkinson, R., 1986a: Estimation of OH radical rate constants from H-atom abstraction from C-H and O-H bonds over the temperature range 250–1000 K. Int. J. Chem. Kinet. 18, 555.Google Scholar
  8. Atkinson, R., 1986b: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 86, 69–201.Google Scholar
  9. Atkinson, R., and S.M. Aschmann, 1986: Kinetics of the reactions of naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene with OH radicals and with O3 at 295 ± 1 K. Int. J. Chem. Kinet. 18, 569–573.Google Scholar
  10. Atkinson, R., 1987: A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinet. 19, 799.Google Scholar
  11. Atkinson, R., 1988: Estimation of gas-phase hydroxyl radical rate constants for organic chemicals. Environ. Toxicol. Chem. 7, 435–442.Google Scholar
  12. Atkinson, R., 1989: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data, Monogr. 1, 1–246.Google Scholar
  13. Atkinson, R., D.L. Baulch, R.A. Cox, R.F. Hampson, Jr., J.A. Kerr, M.J. Rossi, and J. Troe, 1997: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: supplement V, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26, 521–1011.Google Scholar
  14. Atkinson, R., R. Guicherit, R.A. Hites, W.-U. Palm, J.N. Seiber, and P. Voogt, 1999: Transformations of pesticides in the atmosphere: a state of the art. Water Air Soil Pollut. 115, 219–243.Google Scholar
  15. Avila, L.A., J.H. Massey, S.A. Senseman, K.L. Armbrust, S.R. Lancaster, G.N. Mccauley, and J.M. Chandler, 2006: Imazethapyr aqueous photolysis, reaction quantum yield, and hydroxyl radical rate constant. J. Agric. Food Chem. 54, 2635–2639.Google Scholar
  16. Behnke, W., F. Nolting, and C. Zetzsch: 1987: The atmospheric fate of di(2-ethylhexyl-)phthalate, adsorbed on various metal oxide model aerosols and on coal fly ash. J. Aerosol Sci. 18, 849–852.Google Scholar
  17. Behnke, W., W. Holländer, W. Koch, F. Nolting, and C. Zetzsch, 1988: A smog chamber for studies of the photochemical degradation of chemicals in the presence of aerosols. Atmos. Environ. 22, 1113–1120.Google Scholar
  18. Behnke, W., and C. Zetzsch, 1989: Über die Reaktivität von Lindan gegenüuber OH-Radikalen (Forschungsvorhaben 93 3110/6). Umweltbundesamt, Berlin, Deutschland.Google Scholar
  19. Beyer, A., and M. Matthies, 2001: Criteria for long-range transport potential and persistence of pesticides and industrial chemicals (Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Förderkennzeichen 299 65 402. German Environmental Federal Agency, Berlin, Germany.Google Scholar
  20. Bezares-Cruz, J., C.T. Jafvert, and I. Hua, 2004: Solar photodecomposition of decabromodiphenyl ether: products and quantum yields. Environ. Sci. Technol. 38, 4149–4156.Google Scholar
  21. Bidleman, T.F., 1988: Atmospheric processes. Environ. Sci. Technol. 4, 361–367.Google Scholar
  22. Bidleman, T.F., and T. Harner, 2000: Sorption to aerosols. In: R.S. Boethling and D. Mackay (Eds.), Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences, chapter 10. CRC Press, Boca Raton.Google Scholar
  23. Biermann, H.W., H. Mac Leod, R. Atkinson, A.M. Winer, and J.N. Pitts, Jr., 1985: Kinetics of the gas-phase reactions of the hydroxyl radical with naphthalene, phenanthrene, and anthracene. Environ. Sci. Technol. 19, 244–248.Google Scholar
  24. Boethling, R.S., P.H. Howard, and W.M. Meylan, 2004: Finding and estimating chemical property data for environmental assessment. Environ. Toxicol. Chem. 23, 2290–2308.Google Scholar
  25. Brubaker, W.W., Jr., and R.A. Hites, 1997: Polychlorinated dibenzo-p-dioxines and dibenzofurans: gas-phase hydroxyl radical reactions and related atmospheric removal. Environ. Sci. Technol. 31, 1805–1810.Google Scholar
  26. Brubaker, W.W., Jr., and R.A. Hites, 1998a: OH reaction kinetics of gas-phase α- and γ-hexachlorocyclohexane and hexachlorobenzene. Environ. Sci. Technol. 32, 766–769.Google Scholar
  27. Brubaker, W.W., Jr., and R.A. Hites, 1998b: OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. J. Phys. Chem. A 102, 915–921.Google Scholar
  28. Carson, R., 2000: Silent Spring. Penguin Classic, London, UK.Google Scholar
  29. Ciani, A., K.-U. Goss and R.P. Schwarzenbach, 2005: Photodegradation of organic compounds adsorbed in porous mineral layers: determination of quantum yields. Environ. Sci. Technol. 39, 6712–6720.Google Scholar
  30. Choudhry, G.G., and G.R.B. Webster, 1989: Environmental photochemistry of PCDDs 2. Quantum yields of the direct phototransformation of 1,2,3,7-tetra-, 1,3,6,8-tetra-, 1,2,3,4,6,7,8-hepta-, and 1,2,3,4,6,7,8,9-octachlorodibenzo-p -dioxin in aqueous acetonitrile and their sunlight half-lives. J. Agric. Food Chem. 37, 254–261.Google Scholar
  31. Draper, W.M., 1985: Determination of wavelength-averaged, near UV quantum yields for environmental chemicals. Chemosphere 14, 1195–1203.Google Scholar
  32. Draper, W.M., and D.E. Wakehamt, 1993: Rate constants for metam-sodium cleavage and photodecomposition in water. J. Agric. Food Chem. 41, 1129–1133.Google Scholar
  33. Dulin, D., and T. Mill, 1982: Development and evaluation of sunlight actinometers. Environ. Sci. Technol. 16, 815–820.Google Scholar
  34. ECETOC, 1984: The Phototransformation of Chemicals in Water: Results of a Ring Test. ECETOC Technical Report No 12, Brussels, Belgium.Google Scholar
  35. Environmental Protection Agency, 2007: EPI-SUITE, Version 3.20. EPA’s Office of Pollution Prevention Toxics and Syracuse Research Corporation.Google Scholar
  36. Faroon, O.M., L.S. Keith, C. Smith-Simon, and C.T. De Rosa, 2003: Polychlorinated Biphenyls: Human Health Aspects (Concise International Chemical Assessment Document 55). World Health Organization, Geneva.Google Scholar
  37. Fasnacht, M.P., and N.V. Blough, 2003: Aqueous photodegradation of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 37, 5767–5772.Google Scholar
  38. Fritz, B., K. Lorenz, W. Steinert, and R. Zellner, 1982: Laboratory kinetic investigations of the tropospheric oxidation of selected industrial emissions. In: B. Versino and H. Ott (Eds.), Proceedings of the Second European Symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, pp. 192–202. D. Reidel Publishing Company, Dordrecht, Holland.Google Scholar
  39. Gal, P.A.E., E. Chamarro, and S. Esplugas, 1992: Photochemical degradation of parathion in aqueous solutions. Water Res. 26, 911–915.Google Scholar
  40. German Federal Environment Agency (UBA), 2007: Endosulfane. Draft Dossier prepared in support of a proposal of endosulfan to be considered as a candidate for inclusion in the Annexes to the Stockholm Convention Dessau, Germany.Google Scholar
  41. Goss, K.-U., and R.P. Schwarzenbach, 1999: Empirical prediction of heats of vaporization and heats of adsorption of organic compounds. Environ. Sci. Technol. 33, 3390–3393.Google Scholar
  42. Haag, W.R., and C.C.D. Yao, 1992: Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 26, 1005–1013.Google Scholar
  43. Hansch, C., A. Leo, and R.W. Taft, 1991: A survey of Hammett substitution constants and resonance and field parameters. Chem. Rev. 91, 165–195.Google Scholar
  44. Harris, J., 1982: Rates of direct aqueous photolysis. In: W. Lyman, W. Reehl and D. Rosenblatt (Eds.), Handbook of Chemical Property Estimation Methods: Environmental Behaviour of Organic Compounds. McGraw-Hill, New York.Google Scholar
  45. Harner, T., and T.F. Bidleman, 1998: Measurement of octanol-air partition coe ± cients for polycyclic aromatic hydrocarbons and polychlorinated naphthalenes. J. Chem. Eng. Data 43, 40–46.Google Scholar
  46. Hessler, D.P., V. Gorenflo, and F.H. Frimmel, 1993: Degradation of aqueous atrazine and metazachlor solutions by UV and UV/H2O2 – influence of pH and herbicide concentration. Acta Hydrochim. Hydrobiol. 21, 209–214.Google Scholar
  47. Howe, P.D., C. Melber, J. Kielhorn, and I. Mangelsdorf, 2001: Chlorinated Naphthalenes (Concise International Chemical Assessment Document 34). World Health Organization, Geneva.Google Scholar
  48. Hüskes, R., and W.-U. Palm, 1995: Fate of airborne pesticides: photochemical transformation of chlorothalonil and lindane. In: K.H. Becker (Ed.), Joint EC/EUROTRAC/GDCh Workshop LACTOZ/HALIPP, Tropospheric Oxidation Mechanisms, September 20–22, 1994, Leipzig. European Commission EUR 16171 EN, Luxemburg.Google Scholar
  49. Industrieverband Agrar e. V. (Ed.), 1990: Wirkstoffe in Pflanzenschutz- und Schädlingsbekämpfungsmitteln. Physikalisch-chemische und toxikologische Daten. BLV, München.Google Scholar
  50. Jones, C.E., and L.J. Carpenter, 2005: Solar photolysis of CH2I2, CH2ICl, and CH2IBr in water, saltwater, and seawater. Environ. Sci. Technol. 39, 6130–6137.Google Scholar
  51. Klecka, G., B. Boethling, J. Franklin, L. Grady, D. Graham, P.H. Howard, K. Kannan, R.J. Larson, D. Mackay, D. Muir, and D. van de Meent (Eds.), 2000: Evaluation of Persistence and Long-Range Transport of Organic Chemicals in the Environment. SETAC Press, Pensacola.Google Scholar
  52. Kochany, J., and R.J. Maguire, 1994: Sunlight photodegradation of metolachlor in water. J. Agric. Food Chem. 42, 406–412.Google Scholar
  53. Kucklick, J.R., and P.A. Helm, 2006: Advances in the environmental analysis of polychlorinated naphthalenes and toxaphene. Anal. Bioanal. Chem. 386, 819–836.Google Scholar
  54. Kuhn, H.J., S.E. Braslavsky, and R. Schmidt, 2004: Chemical actinometry (IUPAC Technical Report). Pure Appl. Chem. 76, 2105–2146.Google Scholar
  55. Kwok, E.S.C., R. Atkinson, and J. Arey, 1992: Gas-phase atmospheric chemistry of selected thiocarbamates. Environ. Sci. Technol. 26, 1798.Google Scholar
  56. Kwok, E.S., J. Arey, and R. Atkinson, 1994: Gas-phase atmospheric chemistry of dibenzo-p-dioxin and dibenzofuran. Environ. Sci. Technol. 28, 528–533.Google Scholar
  57. Kwok, E.C., and R. Atkinson, 1995: Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update. Atmos. Environ. 29, 1685–1695.Google Scholar
  58. Kwok, E.S., R. Atkinson, and J. Arey, 1995: Rate constants for the gas-phase reactions of the OH radical with dichlorobiphenyls, 1-chlorodibenzo-p-dioxin, 1,2-dimethoxybenzene, and diphenyl ether: estimation of OH radical reaction rate constants for PCBs, PCDDs, and PCDFs. Environ. Sci. Technol. 29, 1591–1598.Google Scholar
  59. Läuger, P., H. Martin, and P. Müller, 1944: Über Konstitution und toxische Wirkung von natürlichen und neuen synthetischen insektentötenden Stoffen. Helv. Chim. Acta 27, 892–928.Google Scholar
  60. Lawrence, M.G., P. Jäckel, and R. von Kuhlmann, 2001: What does the global mean OH concentration tell us? Atmos. Chem. Phys. 1, 37–49.Google Scholar
  61. Leifer, A., 1988: The Kinetics of Environmental Aquatic Photochemistry. Theory and Practice. ACS Professional Reference Book. American Chemical Society, Washington, DC.Google Scholar
  62. Lemaire, J., J.A. Guth, D. Klais, J. Leahey, W. Merz, J. Philp, R. Wilmes, and C.J.M. Wolff, 1985: Ring test of a method for assessing the phototransformation of chemicals in water. Chemosphere 14, 53–77.Google Scholar
  63. Liu, Q., H.-U. Krüger, and C. Zetzsch, 2005: Degradation study of the aerosol-borne insecticides Dicofol and DDT in an aerosol smog chamber facility by OH radicals in relation to the POPs convention. In: Proceedings to European Geosciences Union, Vienna.Google Scholar
  64. Lu, Y., and M.A.K. Khalil, 1991: Tropospheric OH: model calculations of spatial, temporal, and secular variations. Chemosphere 23, 397–444.Google Scholar
  65. Meylan, W., and P. Howard, 1992: Atmospheric Oxidation Program – AOP (Version 1.4). Syracuse Research Corporation, Syracuse.Google Scholar
  66. Mabury, S.A., and D.G. Crosby, 1996: Pesticide reactivity toward hydroxyl and its relationship to field persistence. J. Agric. Food Chem. 44, 1920–1924.Google Scholar
  67. Mansour, M., E. Feicht, and P. Meallier, 1989: Improvement of the photostability of selected substances in aqueous medium. Toxicol. Environ. Chem. 20–21, 139–145.Google Scholar
  68. Marco, G.J., R.M. Hollingworth, and W. Durham (Eds.), 1987: Silent Spring Revisited. American Chemical Society, Washington, DC.Google Scholar
  69. Mill, T., J. Davenport, D. Dulin, W. Mabey, and R. Bawol, 1981a: Evaluation and Optimization of Photolysis Screens (EPA 560/5-81-003). U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  70. Mill, T., W.R. Mabey, B.Y. Lan, and A. Baraze, 1981b: Photolysis of polycyclic aromatic hydrocarbons in water. Chemosphere 10, 1281–1290.Google Scholar
  71. Mill, T, 1999: Predicting photoreaction rates in surface water. Chemosphere 38, 1379–1390.Google Scholar
  72. Mill, T., and W. Mabey, 1985: Photodegradation in water. In: W. Neely and G. Blau (Eds.), Environmental Exposure from Chemicals, chapter 8. CRC Press, Boca Raton.Google Scholar
  73. Millet, M., W.-U. Palm, and C. Zetzsch, 1998a: Abiotic degradation of halobenzonitriles: investigation of the photolysis in solution. Ecotox. Environ. Safety 41, 44–50.Google Scholar
  74. Millet, M., W.-U. Palm, and C. Zetzsch, 1998b: Investigation of the photochemistry of urea herbicides (Chlorotoluron and Isoproturon) and quantum yields using polychromatic irradiation. Environ. Tox. Chem. 17, 258–264.Google Scholar
  75. Mosier, A.F., and W.D.G.L.L. Miller, 1969: Photochemical decomposition of DDT by a free-radical mechanism. Science 164, 1083.Google Scholar
  76. Murov, S.L., I. Carmichael, and G.L. Hug, 1993: Handbook of Photochemistry (2nd Ed.). Marcel Decker, New York.Google Scholar
  77. Müller, M.D., M. Schlabach, and M. Oehme, 1992: Fast and precise determination of α-hexachlorocyclohexane enantiomers in environmental samples using chiral high-resolution gas chromatography. Environ. Sci. Technol. 26, 566–569.Google Scholar
  78. Munthe, J., and A. Palm (Eds.), 2003: Atmospheric Cycling of Mercury and Persistent Organic Pollutants. Overview of Subproject MEPOP. In: P.M. Midgley and M. Reuther (Eds.), Towards Cleaner Air for Europe – Science, Tools and Applications Part 2. Overviews from the Final Reports of the EUROTRAC-2 Subprojects. Chapter 10, pp. 183–205. Margraf Verlag, Weikersheim.Google Scholar
  79. National Institute of Standards and Technology, 2007: NDRL/NIST Solution Kinetics Database on the Web (Web, free access) (http://kinetics.nist.gov/solution/index.php).
  80. Nick, K., H.F. Schöler, G. Mark, T. Söylemez, M.S. Akhlaq, H.-P. Schuchmann, and C. von Sonntag, 1992: Degradation of some triazine herbicides by UV radiation such as used in the UV disinfection of drinking water. J. Water SRT – Aqua 41, 82–87.Google Scholar
  81. NIST – National Institute of Standards and Technology, 2005: Chemical Kinetics Database on the Web. Standard Reference Database 17, Version 7.0 (Web Version), Release 1.3 A compilation of kinetics data on gas-phase reactions (http://kinetics.nist.gov/index.php).
  82. Notre Dame Radiation Laboratory, 2002: NDRL Radiation Chemistry Data Center (http://www.rcdc.nd.edu/browsecompil.html).
  83. OECD, 1997: Guidance Document on Direct Phototransformation of Chemicals in Water. OECD Environmental Health and Safety Publication. Series on Testing and Assessment No. 7, Paris, France.Google Scholar
  84. Ohta, T., and T. Ohyama, 1985: A set of rate constants for the reaction of OH radicals with aromatic hydrocarbons. Bull. Chem. Soc. Jpn. 58, 3029–3030.Google Scholar
  85. Palm, W.-U., and C. Zetzsch, 1996: Investigation of the photochemistry and quantum yields of triazines using polychromatic irradiation and UV-spectroscopy as analytical tool. Int. J. Environ. Anal. Chem. 65, 313–329.Google Scholar
  86. Palm, W.-U., 2010: Leuphana University of Lüneburg. Not published results.Google Scholar
  87. Palm, W.-U., M. Elend, H.-U. Krüger, and C. Zetzsch, 1997a: OH-radical reactivity of airborne terbuthylazine adsorbed on inert aerosol. Environ. Sci. Technol. 31, 3389–3396.Google Scholar
  88. Palm, W.-U., M. Millet, and C. Zetzsch, 1997b: Photochemical reactions of metamitron. Chemosphere 35, 1117–1130.Google Scholar
  89. Palm, W.-U., R. Kopetzky, and W. Ruck, 2003: OH-radical reactivity and direct photolysis of triphenyltin hydroxide in aqueous solution. J. Photochem. Photobiol. A Chem. 156, 105–114.Google Scholar
  90. Palm, W.-U., R. Kopetzky, W. Sossinka, W. Ruck, and C. Zetzsch, 2004: Photochemical reactions of brominated diphenylethers in organic sovents and adsorbed on silicon dioxide in aqueous suspension. Organohalogen Comp. 66, 4105–4110.Google Scholar
  91. Palm, W.-U., M. Millet, and C. Zetzsch, 1998: OH-radical reactivity of pesticides adsorbed on aerosol materials – first results of experiments with filter samples. Ecotox. Environ. Safety 41, 36–43.Google Scholar
  92. Palm, W.-U., M. Elend, H.-U. Krüger, and C. Zetzsch, 1999: Atmospheric degradation of a semivolatile aerosol-borne pesticide: reaction of OH with pyrifenox (an oxime-ether), adsorbed on SiO2. Chemosphere 38, 1241–1252.Google Scholar
  93. Palm, W.-U., Y. Tertyshaya, L. Tamas, N. Scharnagel, and W. Ruck, 2007: Abiotic degradation of the pesticide safener mefenpyr-diethyl in aqueous phase. Unpublished results.Google Scholar
  94. Prinn, R., D. Cunnold, R. Rasmussen, S. Simmonds, F. Alyea, A. Crawford, P. Fraser, and R. Rosen, 1987: Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science 238, 945–950.Google Scholar
  95. Pirisi, F.M., P. Cabras, V.L. Garau, M. Melis, and E. Secchi, 1996: Photodegradation of pesticides. Photolysis rates and half-life of pirimicarb and its metabolites in reactions in water and in solid phase. J. Agric. Food Chem. 44, 2417–2422.Google Scholar
  96. Raff, J.D., and R.A. Hites, 2006: Gas-phase reactions of brominated diphenyl ethers with OH radicals. J. Phys. Chem. A 110, 10783–10792.Google Scholar
  97. Rayne, S., and M.G. Ikonomou, 2003: Predicting gas chromatographic retention times for the 209 polybrominated diphenyl ether congeners. J. Chrom. A 1016, 235–248.Google Scholar
  98. Remberg, G., P. Sandra, W. Nyiry, N. Winker, and A. Nikiforov, 1998: Calculation of the polychlorinated terphenyl congener distribution and gas chromatographic retention behaviour of selected single standards on four stationary liquid phases. Fresenius J. Anal. Chem. 362, 404–408.Google Scholar
  99. Ritter, L., K.R. Solomon, J. Forget, M. Stemeroff, and C. O’Leary, 1995: Persistent Organic Pollutants. An Assessment Report on: DDT, Aldrin, Dieldrin, Endrin, Chlordane, Heptachlor-Hexachlorobenzene, Mirex, Toxaphene, Polychlorinated Biphenyls, Dioxins, and Furans. For The International Programme on Chemical Safety (IPCS) within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC). The full report can be requested from the UNEP via E-Mail (pops@unep.ch).Google Scholar
  100. Roof, A.A.M., 1982: Aquatic photochemistry. In: O. Hutzinger (Ed.), The Handbook of Environmental Chemistry, Vol. 2, Part B (Reactions and Processes), p. 43. Springer, Berlin.Google Scholar
  101. Ross, A.B., W.G. Mallard, W.P. Helman, B.H.J. Bielski, G.V. Buxton, D.E. Cabelli, C.L. Greenstock, R.E. Huie, and P. Neta, 1992: NDRL-NIST Solution Kinetics Database: Ver. 1. National Institute of Standards and Technology, Gaithersburg.Google Scholar
  102. Roth, C.M., K.-U. Goss and R.P. Schwarzenbach, 2002: Adsorption of a diverse set of organic vapours on the bulk water surface. J. Colloid Interface Sci. 252, 21–30.Google Scholar
  103. Ruzo, L.O., M.J. Zabik, and R.D. Schuetz, 1974: Photochemistry of bioactive compounds. Photochemical processes of polychlorinated biphenyls. J. Am. Chem. Soc. 96, 3809–3813.Google Scholar
  104. Saborit, P.C.I., 1986: Estudi de la fotodescomposicio de l’acid 4-cloro-2-metilfenoxiacetic (MCPA). Butll. Soc. Cat. Cien. 7, 147–165.Google Scholar
  105. Scheringer, M., 2002: Persistence and Spatial Range of Environmental Chemicals. Wiley-VCH, Weinheim.Google Scholar
  106. Sigman, M.E., P.F. Schuler, M.M. Ghosh, and R.T. Dabestani, 1998: Mechanism of pyrene photochemical oxidation in aqueous and surfactant solutions. Environ. Sci. Technol. 32, 3980–3985.Google Scholar
  107. Sjödin, A., E. Jakobsson, A. Kierkegaard, G. Marsh, and U. Sellström, 1998: Gas chromatographic identification and quantification of polybrominated diphenyl ethers in a commercial roduct, Bromkal 70-5DE. J. Chromatogr. A, 822, 83–89.Google Scholar
  108. Stockholm Convention. Stockholm Convention on Persistent Organic Pollutants (POPs). http://chm.pops.int/
  109. Skurlatov, Y.I., R.G. Zepp, and G.L. Baughman, 1983: Photolysis rates of (2,4,5-trichlorophenoxy)acetic acid and 4-amino-3,5,6-trichloropicolinic acid in natural waters. J. Agric. Food Chem. 31, 1085–1071.Google Scholar
  110. Swanson, M.B., W.A. Ivancic, A.M. Saxena, J.D. Allton, and G.K. O’Brien, 1995: Direct photolysis of fenpyroximate in a bu®ered aqueous solution under a xenon lamp. J. Agric. Food Chem. 43, 513–518.Google Scholar
  111. Schwarzenbach, R.P., P.M. Gschwend, and D.M. Imboden, 1993: Environmental Organic Chemistry. Wiley, New York.Google Scholar
  112. Soley, J., M. Vicente, P. Clapes, and S. Esplugas, 1986: Kinetic study of 4-chloro-2-methylphenoxyacetic acid photodegradation. Ind. Eng. Chem. Prod. Res. Dev. 25, 645.Google Scholar
  113. Sondack, D., T. Ron, and M.D. Kallos, 1993: The characterization of polybrominated diphenyl ethers. In: J.R. Desmurs, B. Gerard and M.-J. Goldstein (Eds.), Orgabrom ‘93, Jerusalem, June 28–July 2 1993, pp. 399–407. Elsevier, Amsterdam.Google Scholar
  114. Spivakovsky, C.M., R. Yevich, J.A. Logan, S.C. Wofsy, M.B. McElroy, and M.J. Prather, 1990: Tropospheric OH in a three-dimensional chemical tracer model: an assessment based on observations of CH3CCl3. J. Geophys. Res. 95, 441–471.Google Scholar
  115. Tace, E., J. de Laat, and M. Dore, 1992: Photodegradation de l’atrazine en milieu aqueux par irradation UV en absence et en presence de peroxyde d’hydrogène. J. Fr. Hydrol. 23, 233–249.Google Scholar
  116. Taylor, R., 1990: Electrophilic Aromatic Substitution. Wiley, Chichester.Google Scholar
  117. Tuazon, E.C., R. Atkinson, A.M. Winer, and J.N. Pitts, Jr., 1984: A study of the atmospheric reactions of 1,3-dichloropropene and other selected organochlorine compounds. Arch. Environ. Contam. Tox. 13, 691–700.Google Scholar
  118. Tuazon, E.C., R. Atkinson, S.M. Aschmann, J. Arey, A.M. Winer, and J.N. Pitts, Jr., 1986: Atmospheric loss processes of 1,2-dibromo-3-chloropropane and trimethyl phosphate. Environ. Sci. Technol. 20, 1043–1046.Google Scholar
  119. UBA, 1992: Direct Phototransformation of Chemicals in Water – A Proposal for a Test Guideline. UBA, Berlin, Germany.Google Scholar
  120. U.K. DOE, 1993: Determination of the Stability of Substance in Simulated Sunlight – A Proposal for a Test Guideline. Department of the Environment, United Kingdom.Google Scholar
  121. U.S. EPA, 1998: Direct Photolysis Rate in Water by Sunlight (OPPTS 835.2210). United States Environmental Protection Agency, Washington, DC.Google Scholar
  122. UNECE, 1998: The United Nations Economic Commission for Europe Convention on Long-range Transboundary Air Pollution. The 1998 Aarhus Protocol on Persistent Organic Pollutants (POPs). Protocol to the 1979 Convention on Long-Range Transboundary Air Pollution on Persistent Organic Pollutants.Google Scholar
  123. van der Gon, H.D., A. Visschedijk, and M. van het Bolscher, 2006: Study to the effectiveness of the UNECE Persistent Organic Pollutants (POP) Protocol and cost of additional measures. Phase II: Estimates emission reduction and cost of options for a possible revision of the POP protocol. TNO-report 2006-A-R0187/B, Utrecht.Google Scholar
  124. Wallington, T.J., D.M. Neuman, and M.J. Kurylo, 1987: Kinetics of the gas phase reaction of hydroxyl radicals with ethane, benzene and a series of halogenated benzenes over the temperature range 234–438 K. Int. J. Chem. Kinet. 19, 725–739.Google Scholar
  125. Wan, H.B., M.K. Wong, and C.Y. Mok, 1994: Comparative study on the quantum yields of direct photolysis of organophosphorus pesticides in aqueous solution. J. Agric. Food Chem. 42, 2625–2630.Google Scholar
  126. Wayne, R.P., I. Barnes, P. Briggs, J.P. Burrows, C.E. Canosa-Mas, J. Hjorth, G.L. Bras, G.K. Moortgat, D. Perner, G. Poulet, and H. Sidebottom, 1991: The nitrate radical: physics, chemistry, and the atmosphere. Atmos. Environ. 25A, 1–203.Google Scholar
  127. Wenger, J.C., S.L. Calve, H.W. Sidebottom, K.K. Wirtz, M.M.M.M. Reviejo, and J.A. Franklin, 2004: Photolysis of Chloral Under Atmospheric Conditions. Environ. Sci. Technol. 38, 831–837.Google Scholar
  128. Wiegman, S., P.L.A. van Vlaardingen, W.J.G.M. Peijnenburg, S.A.M. van Beusekom, M.H.S. Kraak, and W. Admiraal, 1999: Photokinetics of azaarenes and toxicity of phototransformation products to the marine diatom Phaeodactylum tricornutum. Environ. Sci. Technol. 33, 4256–4262.Google Scholar
  129. Wellington Laboratories, 2005: Polybrominated diphenyl ethers; technical mixtures (http://www.well-labs.ca/newproducts/Technical Mixes.pdf).
  130. Witte, F., and C. Zetzsch, 1990: Capabilities and limitations of the ash photolysis/resonance fluorescence method: testing of pesticides for their abiotic degradability. In: Proceedings of the Seventh International Congress of Pesticide Chemistry, p. 41, Hamburg.Google Scholar
  131. Zeidler, O., 1874: Verbindungen von Chloral mit Brom- und Chlorbenzol. Ber. Deut. Chem. Ges. 7, 1180–1181.Google Scholar
  132. Zepp, R.G., N.L. Wolfe, J.A. Gordon, and G.L. Baughman, 1975: Dynamics of 2,4-D esters in surface waters. Environ. Sci. Technol. 9, 1144.Google Scholar
  133. Zepp, R.G., N.L. Wolfe, J.A. Gordon, and R.C. Fincher, 1976: Light-induced transformations of methoxychlor in aquatic systems. J. Agric. Food Chem. 24, 727–733.Google Scholar
  134. Zepp, R.G., and D.M. Cline, 1977: Rates of direct photolysis in aquatic environment. Environ. Sci. Technol. 11, 359–366.Google Scholar
  135. Zepp, R.G., N.L. Wolfe, L.V. Azarraga, R.H. Cox, and C.W. Pape, 1977: Photochemical transformation of DDT and methoxychlor degradation products, DDE and DMDE, by sunlight. Arch. Environ. Contam. Toxicol. 6, 305.Google Scholar
  136. Zepp, R.G., 1978: Quantum yields for reaction of pollutants in dilute aqueous solution. Environ. Sci. Technol. 12, 327.Google Scholar
  137. Zepp, R.G., 1982: Experimental approaches to environmental photochemistry. In: O. Hutzinger (Ed.), Handbook of Environmental Photochemistry, Vol 2, Part B, pp. 19–40. Springer-Verlag, New York.Google Scholar
  138. Zepp, R.G., and P.F. Schlotzhauer, 1997: Photoreactivity of selected aromatic hydrocarbons in water. In: P.W. Jones and P. Leber (Eds.), Polynuclear Aromatic Hydrocarbons, pp. 141–158. Ann Arbor Science Publishers, Ann Arbor.Google Scholar
  139. Zetsch, C., 2004: Personal communication, University of Bayreuth, May 2004.Google Scholar
  140. Zetzsch, C., 1982: Predicting the rate of OH-addition to aromatics using ¾ + -electrophilic substituent constants for mono- and polysubstituted benzene. In: Proceedings of the XVth Informal Conference on Photochemistry, pp. 29–32, Stanford.Google Scholar
  141. Zetzsch, C., 1991a: Photochemischer Abbau in Aerosolphasen. UWSF- Z. Umweltchem. Ökotox. 3, 59–64.Google Scholar
  142. Zetzsch, C., 1991b: Experimental simulation of the influence of aerosols on atmospheric samples. Pollut. Atmos. 33S, 89–105.Google Scholar
  143. Zetzsch, C., W.-U. Palm, and H.-U. Krüger, 2004: Photochemistry of 2,2′,4,4′,5,5′-hexaBDE (BDE-153) in THF and adsorbed on SiO2: first observation of OH reactivity of BDEs on aerosol. Organohalogen Comp. 66, 2281–2287.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Ecology and Environmental ChemistryLeuphana University of LüneburgLüneburgGermany

Personalised recommendations