Curbing the Omnipresence of Lead in the European Environment Since the 1970s: A Successful Example of Efficient Einvironmental Policy

  • Hans von StorchEmail author


For the foreseeable future, the atmosphere and the environment in general will remain to serve as a dump for various anthropogenic substances. Some substances will have negative properties so that society will sooner or later begin regulating their emissions. To that end, science must provide society with the tools for the retrospective evaluation of the physical and economical impacts of past regulations, and for the predictive evaluation of alternative scenarios of future regulations.


Lead Concentration Blood Lead Level Automobile Emission Unleaded Gasoline Lead Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to the ‘lead group’ at the Helmholtz-Zentrum Geesthacht: Charlotte Hagner, Mariza Costa-Cabral, Frauke Feser, Annette-Schulte-Rentrop; to Jozef Pacyna and Elisabeth Pacyna, who constructed the emission maps; to Steffen Kolb, who analysed the contemporary media discourse.

For further information refer to: The annual emissions, and modelled concentrations and depositions data are available for download from a link on this page.


  1. Aulinger, A, V. Matthias and M. Quante, 2007: Introducing a partitioning mechanism for PAHs into the Community Multiscale Air Quality modelling system and its application to simulating the transport of benzo(a)pyrene over Europe. J. Appl. Meteorol. 46 1718–1730CrossRefGoogle Scholar
  2. Berwick, I., 1987: The rise and fall of lead in petrol. Phys. Technol. 18, 158–164CrossRefGoogle Scholar
  3. Breu, M., S. Gerber, M. Mosimann and T. Vysusil, 2002: Bleibenzin – eine schwere Geschichte. Die Geschichte der Benzinverbleiung aus der Sicht der Politik, des Rechts, der Wirtschaft und der Ökologie. Ökom Verlag, MünchenGoogle Scholar
  4. Costa-Cabral, M.C., 1999: TUBES: An exact solution to advective transport of trace species in a two-dimensional discretized flow field using flow tubes. GKSS report GKSS 99/E/60Google Scholar
  5. Feser, F., R. Weisse and H. von Storch, 2001: Multi-decadal atmospheric modelling for Europe yields multi-purpose data. EOS Trans. Am. Geophys. Union 82, 28, 305–310CrossRefGoogle Scholar
  6. Hagner, C., 2000: European regulations to reduce lead emissions from automobiles – did they have an economic impact on the German gasoline and automobile markets? Reg. Environ. Change 1, 135–151CrossRefGoogle Scholar
  7. Hagner, C., 2002: Regional and long-term patterns of lead concentrations in riverine, marine and terrestrial systems and humans in Northwest Europe. Water Air Soil Pollut. 134, 1–40CrossRefGoogle Scholar
  8. Johansson K, B. Bergbäck and G. Tyler, 2001: Impact of atmospheric long range transport of lead, mercury and cadmium on the Swedish forest environment. Water Air Soil Pollut. Focus 1, 279–297CrossRefGoogle Scholar
  9. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne and D. Joseph, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Met. Soc. 77, 3, 437–471CrossRefGoogle Scholar
  10. Kitmann, J.L., 2000: The secret story of lead. Nation 270, 11, 11–44Google Scholar
  11. Kolb, S., 2005: Mediale Thematisierung in Zyklen. Theoretischer Entwurf und empirische Anwendung. Dissertation Universität Hamburg. Herbert von Halem Verlag, KölnGoogle Scholar
  12. Matthias, V., A. Aulinger and M. Quante, 2007: Adapting CMAQ to investigate air pollution in North Sea coastal regions. Environ. Model. Softw. 23, 356–368CrossRefGoogle Scholar
  13. Mosimann, M., M. Breu, T. Vysusil and S. Gerber, 2002: Vom Tiger im Tank – Die Geschichte des Bleibenzins. Gaia 11, 203–212Google Scholar
  14. Pacyna, J.M. and E.G. Pacyna, 2000: Atmospheric emissions of anthropogenic lead in Europe: Improvements, updates, historical data and projections. GKSS Report 2000/31, Helmholtz-Zentrum GeesthachtGoogle Scholar
  15. Schulte-Rentrop, A., M. Costa-Cabral and R. Vink, 2005: Modelling the overland transport of lead deposited from the atmosphere in the Elbe catchment over four decades (1958–1995). Water, Air Soil Pollut. 160, 1–4, 271–291Google Scholar
  16. Seyferth, D., 2003: The rise and fall of tetraethyllead. 2. Organometallics 22, 5154–5178CrossRefGoogle Scholar
  17. Thomas, V., 1995: The elimination of lead in gasoline. Ann. Rev. Energy Environ. 20, 301–324CrossRefGoogle Scholar
  18. Thomas, V.M., R.H. Socolow, J.J. Fanelli and T.G. Sprio, 1999: Effects of reducing lead in gasoline: an analysis of the international experience. Environ. Sci. Technol. 33, 3942–3947CrossRefGoogle Scholar
  19. Thomas, V. and A. Kwong, 2001: Ethanol as a lead replacement: Phasing out leaded gasoline in Africa. Energy Policy 29, 1133–1143CrossRefGoogle Scholar
  20. von Storch, H. and C. Hagner, 2004: Controlling lead concentrations in human blood by regulating the use of lead in gasoline. A case study for Germany. Ambio 33, 126–132Google Scholar
  21. von Storch, H., C. Hagner, M. Costa-Cabral, F. Feser, J. Pacyna, E. Pacyna and S. Kolb, 2002: Reassessing past European gasoline lead policies. EOS Am. Geophys. Union 83, 393 + 399Google Scholar
  22. von Storch, H., M. Costa-Cabral, C. Hagner, F. Feser, J. Pacyna, E. Pacyna and S. Kolb, 2003: Four decades of gasoline lead emissions and control policies in Europe: A retrospective assessment. Sci. Total Environ. (STOTEN) 311, 151–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Helmholtz-Zentrum GeesthachtInstitute of Coastal ResearchGeesthachtGermany

Personalised recommendations