Heavy Metals in Antarctic and Greenland Snow and Ice Cores: Man Induced Changes During the Last Millennia and Natural Variations During the Last Climatic Cycles

  • Claude BoutronEmail author
  • Carlo Barbante
  • Sungmin Hong
  • Kevin Rosman
  • Michael Bolshov
  • Freddy Adams
  • Paolo Gabrielli
  • John Plane
  • Soon-Do Hur
  • Christophe Ferrari
  • Paolo Cescon


In this chapter, we give an overview of some of the most interesting results which have been obtained by studying the changing occurrence of heavy metals in Antarctic and Greenland snow and ice cores. After recalling the pioneering role of Clair Patterson in this field, we describe first briefly the conditions which must be fulfilled to obtain fully reliable data, especially regarding the cleanliness of the samples and the use of specially designed clean laboratories. We present then some of the most interesting data which have been obtained on man induced changes during the past millennia/centuries. They show clear evidence of a global pollution of the atmosphere of our planet for heavy metals, which can be detected even in the most remote areas of the Southern Hemisphere and can be traced back to Roman times in the Northern Hemisphere. Finally, we present some recent data on past natural changes in heavy metals in ice dated back to 670 kyr BP, with pronounced variations during the successive interglacial/glacial climatic cycles.


Heavy Metal Glacial Maximum Interglacial Period Soil Dust Climatic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anders, E. and N. Grevesse, 1989: Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214.CrossRefGoogle Scholar
  2. Apatin, V.M., B.V. Arkhangelskii, M.A. Bolshov, V.V. Ermolov, V.G. Koloshnikov, O.N. Kompanetz, N.L. Kuznetsov, E.L. Mikhailov, V.S. Shishkovskii and C.F. Boutron, 1989: Automated laser excited atomic fluorescence spectrometer for determination of trace concentrations of elements. Spectrochim. Acta 44B, 253–262.Google Scholar
  3. Barbante, C. and P. Cescon, 2000: Uses and environmental impact of automobile catalytic converters. In: From Weather Forecasting to Exploring the Solar System, Boutron, C. (Editor). EDP Sciences, Les Ulis, France, pp. 125–145.Google Scholar
  4. Barbante, C., L. Bellomi, G. Mazzadri, P. Cescon, G. Scarponi, C. Morel, S. Jay, K. van de Velde, C. Ferrari and C. Boutron, 1997a: Direct determination of heavy metals at picogram per gram levels in Greenland and Antarctic snow by double focusing inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 12, 925–931.CrossRefGoogle Scholar
  5. Barbante, C., G. Turetta, G. Capodaglio and G. Scarponi, 1997b: Recent decrease in the lead concentration of Antarctic snow. Int. J. Environ. Anal. Chem. 68, 457–477.CrossRefGoogle Scholar
  6. Barbante, C., G. Cozzi, G. Capodaglio, K. van de Velde, C.P. Ferrari, A. Veysseyre, C.F. Boutron, G. Scarponi and P. Cescon, 1999: Determination of Rh, Pd and Pt in polar and alpine snow and ice by double-focusing ICP-MS with microconcentric nebulization. Anal. Chem. 71, 4125–4133.CrossRefGoogle Scholar
  7. Barbante, C., A. Veysseyre, C.P. Ferrari, K. van de Velde, C. Morel, G. Capodaglio, P. Cescon, G. Scarponi and C. Boutron, 2001: Greenland snow evidence of large scale atmospheric contamination for platinum, palladium and rhodium. Environ. Sci. Technol. 35, 835–839.CrossRefGoogle Scholar
  8. Bartholomew, C.H. and R.J. Farrauto, 2006: Fundamentals of Industrial Catalytic Processes, 2nd edition. Wiley, Hoboken.Google Scholar
  9. Bassinot, F.C., L.D. Labeyrie, E. Vincent, X. Quidelleur, N.J. Shackleton and Y. Lancelot, 1994: The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91–108.CrossRefGoogle Scholar
  10. Berger, A, and M.F. Loutre, 2003: Climate 400,000 years ago, a key to the future? In: Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question, Droxler, A.W., R.Z. Poore, and L.H. Burckle (Editors). American Geophysical Union, Washington, D.C. pp. 17–26.CrossRefGoogle Scholar
  11. Bertsch Mc Grayne, S., 2002a: Lead-free gasoline and Clair C. Patterson. In: Prometheans in the Lab: Chemistry and the Making of the Modern World. McGraw Hill, New York, pp. 169–197.Google Scholar
  12. Bertsch Mc Grayne, S., 2002b: Leaded gasoline, safe refrigeration and Thomas Midgley Jr. In: Prometheans in the Lab: Chemistry and the Making of the Modern World. McGraw Hill, New York, pp. 79–105.Google Scholar
  13. Bolshov, M.A., C.F. Boutron and A.V. Zybin, 1989: Determination of lead in Antarctic ice at the picogram-per-gram level by laser atomic fluorescence spectrometry. Anal. Chem. 61, 1758–1762.CrossRefGoogle Scholar
  14. Bolshov, M.A., C.F. Boutron, F.M. Ducroz, U. Görlach, O.N. Kompanetz, S.N. Rudniev and B. Hutch, 1991: Direct ultratrace determination of cadmium in Antarctic and Greenland snow and ice by laser atomic fluorescence spectrometry. Anal. Chim. Acta 251, 169–175.CrossRefGoogle Scholar
  15. Bolshov, M.A., S.N. Rudniev, J.-P. Candelone, C.F. Boutron, and S. Hong, 1994: Ultratrace determination of Bi in Greenland snow by laser atomic fluorescence spectrometry. Spectrochim. Acta 49B, 1445–1452.Google Scholar
  16. Boutron, C.F., 1990: A clean laboratory for ultralow concentration heavy metal analysis. Fresenius J. Anal. Chem. 337, 482–491.CrossRefGoogle Scholar
  17. Boutron, C.F. and C.C. Patterson, 1983: The occurrence of lead in Antarctic recent snow, firn deposited over the last two centuries and prehistoric ice. Geochim. Cosmochim. Acta 47, 1355–1368.CrossRefGoogle Scholar
  18. Boutron, C.F. and C.C. Patterson, 1986: Lead concentration changes in Antarctic ice during the Wisconsin/Holocene transition. Nature 323, 222–225.CrossRefGoogle Scholar
  19. Boutron, C.F., C.C. Patterson, V.N. Petrov, and N.I. Barkov, 1987: Preliminary data on changes of lead concentrations in Antarctic ice from 155,000 to 26,000 years BP. Atmos. Environ. 21, 1197–1202.CrossRefGoogle Scholar
  20. Boutron, C.F., C.C. Patterson, and N.I. Barkov, 1990: The occurrence of zinc in Antarctic ancient ice and recent snow. Earth Planet. Sci. Lett. 101, 248–259.CrossRefGoogle Scholar
  21. Boutron, C.F., U. Görlach, J.-P. Candelone, M.A. Bolshov and R.J. Delmas, 1991: Decrease in anthropogenic lead, cadmium and zinc in Greenland snows since the late 1960s. Nature 353, 153–156.CrossRefGoogle Scholar
  22. Boutron, C.F., S.N. Rudniev, M.A. Bolshov, V.G. Koloshnikov, C.C. Patterson and N.I. Barkov, 1993: Changes in cadmium concentrations in Antarctic ice and snow during the past 155,000 years. Earth Planet. Sci. Lett. 117, 431–441.CrossRefGoogle Scholar
  23. Boutron, C.F., G.M. Vandal, W. Fitzgerald and C.P. Ferrari, 1998: A forty year record of mercury in central Greenland snow. Geophys. Res. Lett. 25, 3315–3318.CrossRefGoogle Scholar
  24. Burton, G.R., K.J.R. Rosman, J.-P. Candelone, L. Burn, C.F. Boutron and S. Hong, 2007: The impact of climatic conditions on Pb and Sr isotopic ratios found in Greenland ice, 7–150 kyr BP. Earth Planet. Sci. Lett. 259, 557–566.CrossRefGoogle Scholar
  25. Candelone, J.-P., S. Hong and C.F. Boutron, 1994: An improved method for decontaminating polar snow and ice cores for heavy metal analysis. Anal. Chim. Acta 299, 9–16.CrossRefGoogle Scholar
  26. Candelone, J.-P., S. Hong, C. Pellone and C.F. Boutron, 1995: Post industrial revolution changes in large scale atmospheric pollution of the Northern Hemisphere by heavy metals as documented in central Greenland snow and ice. J. Geophys. Res. 100, 16605–16616.CrossRefGoogle Scholar
  27. Chisholm, W., K.J.R. Rosman, C.F. Boutron, J.-P. Candelone and S. Hong, 1995: Determination of lead isotopic ratios in Greenland and Antarctic snow and ice at picogram per gram concentrations. Anal. Chim. Acta 311, 141–151.CrossRefGoogle Scholar
  28. Davidson, C.I., 1999: Clean Hands: Clair Patterson’s Crusade Against Environmental Lead Contamination. Nova Science Publishers, Commack, NY.Google Scholar
  29. Delmonte, B., I. Basile-Doelsch, J.R. Petit, V. Maggi, M. Revel-Rolland, A. Michard, E. Jagout and F. Grousset, 2004: Comparing the EPICA and Vostok dust records during the last 220,000 years: Stratigraphic correlation and provenance in glacial periods. Earth Sci. Rev. 66, 63–87.CrossRefGoogle Scholar
  30. EPICA Community Members, 2004: Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628.CrossRefGoogle Scholar
  31. Ferrari, C.P., S. Hong, K. van de Velde, C.F. Boutron, S.N. Rudniev, M. Bolshov, W. Chisholm and K.J.R. Rosman, 2000: Natural and anthropogenic bismuth in central Greenland. Atmos. Environ. 34, 941–948.CrossRefGoogle Scholar
  32. Fischer, H., F. Fundel, U. Ruth, B. Twarloh, A. Wegner, R. Udisti, S. Becagli, E. Castellano, A. Morganti, M. Severi, E. Wolff, G. Littot, R. Röthlisberger, R. Mulvaney, M. Hutterli, P. Kaufmann, U. Federer, F. Lambert, M. Bigler, M. Hansson, U. Jonsell, M. de Angelis, C.F. Boutron, M.-L. Siggaard-Andersen, J.P. Steffensen, C. Barbante, V. Gaspari, P. Gabrielli and D. Wagenbach, 2007: Reconstruction of millennial changes in dust transport, emission and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sectors of Antarctica. Earth Planet. Sci. Lett. 260, 340–354.CrossRefGoogle Scholar
  33. Gabrielli, P., C. Barbante, J.M.C. Plane, A. Varga, S. Hong, G. Cozzi, V. Gaspari, F.A.M. Planchon, W. Cairns, C.P. Ferrari, P.J. Crutzen, P. Cescon and C.F. Boutron, 2004a: Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice. Nature 432, 1011–1014.CrossRefGoogle Scholar
  34. Gabrielli, P., A. Varga, C. Barbante, G. Cozzi, V. Gaspari, C.F. Boutron and G. Capodaglio, 2004b: Determination of Ir and Pt down to the sub-femtogram per gram level in polar ice by ICP-SFMS using preconcentration and a desolvation system. J. Anal. Atom. Spectrom. 19, 831–837.CrossRefGoogle Scholar
  35. Gabrielli, P., C. Barbante, C.F. Boutron, G. Cozzi, V. Gaspari, F. Planchon, C. Ferrari, C. Turetta and S. Hong, 2005a: Variations in atmospheric trace elements in Dome C (East Antarctica) ice over the last two climatic cycles. Atmos. Environ. 39, 6420–6429.CrossRefGoogle Scholar
  36. Gabrielli, P., F.A.M. Planchon, S. Hong, K. Lee, S.D. Hur, C. Barbante, C.P. Ferrari, J.R.Petit, V.Y. Lipenkov, P. Cescon and C.F. Boutron, 2005b: Trace elements in Vostok Antarctic ice during the last four climatic cycles. Earth Planet. Sci. Lett. 234, 249–259.CrossRefGoogle Scholar
  37. Gabrielli, P., J.M.C. Plane, C.F. Boutron, S. Hong, G. Cozzi, P. Cescon, C.P. Ferrari, P.J. Crutzen, J.R. Petit, V.Y. Lipenkov and C. Barbante, 2006: A climate control on the accretion of meteoric and super-chondritic iridium-platinum to the Antarctic ice cap. Earth Planet. Sci. Lett. 250, 459–469.CrossRefGoogle Scholar
  38. Gabrielli, P., C. Barbante, J.M.C. Plane, C.F. Boutron, J.L. Jaffrezo, T.A. Mather, B. Stenni, V. Gaspari, G. Cozzi, C.P. Ferrari and P. Cescon, 2008: Siderophile metal fallout to Greenland from the 1991 winter eruption of Hekla (Iceland) and during the global atmospheric perturbation of Pinatubo. Chem. Geol. 255, 78–86.CrossRefGoogle Scholar
  39. Görlach, U. and C.F. Boutron, 1990: Preconcentration of lead, cadmium, copper and zinc in water at the pg g-1 level by non-boiling evaporation. Anal. Chim. Acta 236, 391–398.CrossRefGoogle Scholar
  40. Hong, S., J.-P. Candelone, C.C. Patterson and C.F. Boutron, 1994: Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265, 1841–1843.CrossRefGoogle Scholar
  41. Hong, S., J.-P. Candelone, C.C. Patterson and C.F. Boutron, 1996a: History of ancient copper smelting pollution during Roman and Medieval times recorded in Greenland ice. Science 272, 246–249.CrossRefGoogle Scholar
  42. Hong, S., J.-P. Candelone, C.C. Patterson and C.F. Boutron, 1996b: Changes in natural lead, copper, zinc and cadmium concentrations in central Greenland ice from 8250 to 149,100 years ago: their association with climatic changes and resultant variations of dominant source contributions. Earth Planet. Sci. Lett. 143, 233–244.CrossRefGoogle Scholar
  43. Hong, S., J.-P. Candelone, M. Soutif and C.F. Boutron, 1996c: A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years. Sci. Total Environ. 188, 183–193.CrossRefGoogle Scholar
  44. Hong, S., A. Lluberas and F. Rodriguez, 2000: A clean protocol for determining ultralow heavy metal concentrations: Its application to the analysis of Pb, Cd, Cu, Zn and Mn in Antarctic snow. Kor. J. Polar Res. 11, 35–47.Google Scholar
  45. Hong, S., Y. Kim, C.F. Boutron, C.P. Ferrari, J.R. Petit, C. Barbante, K.J.R. Rosman and V.Y.Lipenkov, 2003: Climate-related variations in lead concentrations and sources in Vostok Antarctic ice from 65,000 to 240,000 years BP. Geophys. Res. Lett. 22, 2138, doi: 10.1029/2003GL018411.CrossRefGoogle Scholar
  46. Hong, S., C.F. Boutron, P. Gabrielli, C. Barbante, C.P. Ferrari, J.R. Petit, K. Lee and V.Y. Lipenkov, 2004: Past natural changes in Cu, Zn and Cd in Vostok Antarctic ice dated back to the penultimate interglacial period. Geophys. Res. Lett. 31, L20111, doi: 10.1029/2004GL021075.CrossRefGoogle Scholar
  47. Hong, S., C.F. Boutron, C. Barbante, S.D. Hur, K. Lee, P. Gabrielli, G. Capodaglio, C.P. Ferrari, C. Turetta, J.R. Petit, and V.Y. Lipenkov, 2005: Glacial-interglacial changes in the occurrence of Pb, Cd, Cu and Zn in Vostok Antarctic ice from 240 000 to 410 000 years BP. J. Environ. Monit. 7, 1326–1331.CrossRefGoogle Scholar
  48. Jimi, S.I., K.J.R. Rosman, S. Hong, J.-P. Candelone, L.J. Burn and C.F. Boutron, 2008: Simultaneous determination of picogram per gram concentrations of Ba, Pb and Pb isotopes in Greenland ice by thermal ionisation mass spectrometry. Anal. Bioanal. Chem. 390, 495–501.CrossRefGoogle Scholar
  49. Jitaru, P. and F.C. Adams, 2004: Speciation analysis of mercury by solid-phase microextraction and multicapillary gas chromatography hyphenated to inductively coupled plasma time of flight mass spectrometry. J. Chromatogr. A 1055, 197–207.CrossRefGoogle Scholar
  50. Jitaru, P., P. Gabrielli, A. Marteel, J.M.C. Plane, F.A.M. Planchon, P.-A. Gauchard, C.P. Ferrari, C.F. Boutron, S. Hong, F.C. Adams, P. Cescon and C. Barbante, 2009: Ice core evidence of mercury depletion in the Antarctic atmosphere during glacial epochs. Nat.Geosci. 2, 505–508.CrossRefGoogle Scholar
  51. Lobinski, R., C.F. Boutron, J.P. Candelone, S. Hong, J. Szpunar-Lobinska and F.C. Adams, 1993: Speciation analysis of organolead compounds in Greenland snow at the femtogram-per-gram level by capillary gas chromatography/atomic emission spectrometry. Anal. Chem. 65, 2510–2515.CrossRefGoogle Scholar
  52. Lobinski, R., C.F. Boutron, J.P. Candelone, S. Hong, J. Szpunar-Lobinska and F.C. Adams, 1994: Present century snow core record of organolead pollution in Greenland. Environ. Sci. Technol. 28, 1467–1471.CrossRefGoogle Scholar
  53. Marteel, A., C.F. Boutron, C. Barbante, P. Gabrielli, G. Cozzi, V. Gaspari, P. Cescon, C.P. Ferrari, A. Dommergue, K.J.R. Rosman, S. Hong and S.D. Hur, 2008: Changes in atmospheric heavy metals and metalloids in Dome C (East Antarctica) ice back to 672.0 kyr BP (Marine Isotopic Stage 16.2). Earth Planet. Sci. Lett. doi:10.1016/j. epsl.2008.05.021.Google Scholar
  54. McConnell, J.R., G.W. Lamorey and M.A. Hutterli, 2002: A 250-year high-resolution record of Pb flux and crustal enrichment in central Greenland. Geophys. Res. Lett. 29, 2130–2133.CrossRefGoogle Scholar
  55. Moody, J.R., 1982: NBS clean laboratories for trace element analysis. Anal. Chem. 54, 1358A–1374A.Google Scholar
  56. Murozumi, M., T.J. Chow and C.C. Patterson, 1969: Chemical concentration of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochim. Cosmochim. Acta 33, 1271–1294.CrossRefGoogle Scholar
  57. Ng, A. and C.C. Patterson, 1981: Natural concentrations of lead in ancient Arctic and Antarctic ice. Geochim. Cosmochim. Acta 45, 2109–2121.CrossRefGoogle Scholar
  58. Nriagu, J.O., 1983a: Lead and Lead Poisoning in Antiquity. Wiley, New York, 437 pp.Google Scholar
  59. Nriagu, J.O., 1983b: Occupational exposure to lead in ancient times. Sci. Total Environ. 31, 105–116.CrossRefGoogle Scholar
  60. Nriagu, J.O., 1989: A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49.CrossRefGoogle Scholar
  61. Nriagu, J.O., 1990: The rise and fall of leaded gasoline. Sci. Total Environ. 92, 13–28.CrossRefGoogle Scholar
  62. Nriagu, J.O., 1999: Automotive lead pollution: Clair Patterson’s role in stopping it. In: Clean Hands: Clair Patterson’s Crusade Against Environmental Lead Contamination, Davidson, C.I. (Editor). Nova Science Publishers, Commack, NY, pp. 79–92.Google Scholar
  63. Pacyna, J.M. and E.G. Pacyna, 2001: An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9, 269–298.CrossRefGoogle Scholar
  64. Patterson, C.C., 1956: Age of meteorites and the Earth. Geochim. Cosmochim. Acta 10, 230–237.CrossRefGoogle Scholar
  65. Patterson, C.C. and D.M. Settle, 1976: The reduction of orders of magnitude errors in lead analyses of biological materials and natural waters by evaluating and controlling the extent and sources of industrial lead contamination introduced during sample collecting, handling and analysis. In: Accuracy in Trace Analysis, La Fleur P. (Editor). National Bureau of Standards, Washington DC. Spec. Publ. 422, 321–351.Google Scholar
  66. Patterson, C.C., G. Tilton and M. Inghram, 1955: Age of Earth. Science 121, 69–75.CrossRefGoogle Scholar
  67. Paulsen, P.J., E.S. Beary, D.S. Bushee and J.R. Moody, 1988: Inductively coupled plasma mass spectrometric analysis of ultrapure acids. Anal. Chem. 60, 971−975.CrossRefGoogle Scholar
  68. Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.I. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman and M. Stievenard, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.CrossRefGoogle Scholar
  69. Planchon, F.A.M., C.F. Boutron, C. Barbante, E.W. Wolff, G. Cozzi, V. Gaspari, C.P. Ferrari and P. Cescon, 2001: Ultrasensitive determination of heavy metals at the sub-picogram per gram level in ultraclean Antarctic snow samples by inductively coupled plasma sector field mass spectrometry. Anal. Chim. Acta 450, 193–205.CrossRefGoogle Scholar
  70. Planchon, F.A.M., C.F. Boutron, C. Barbante, G. Cozzi, V. Gaspari, E.W. Wolff, C.P. Ferrari and P. Cescon, 2002: Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth Planet. Sci. Lett. 200, 207–222.CrossRefGoogle Scholar
  71. Planchon, F.A.M., K. van de Velde, K.J.R. Rosman, E.W. Wolff, C.P. Ferrari and C.F. Boutron, 2003: One hundred fifty–year record of lead isotopes in Antarctic snow from Coats Land. Geochim. Cosmochim. Acta 67, 693–708.CrossRefGoogle Scholar
  72. Planchon, F.A.M., P. Gabrielli, P.A. Gauchard, A. Dommergue, C. Barbante, W.R.L. Cairns, G. Cozzi, S.A. Nagorski, C.P. Ferrari, C.F. Boutron, G. Capodaglio, P. Cescon, A. Varga and E.W. Wolff, 2004: Direct determination of mercury at the sub-picogram per gram level in polar snow and ice by ICP-SFMS. J. Anal. Atom. Spectrom. 19, 823–830.CrossRefGoogle Scholar
  73. Rosman, K.J.R., W. Chisholm, C.F. Boutron, J.-P. Candelone and U. Görlach, 1993: Isotopic evidence for the source of lead in Greenland snows since the late 1960s. Nature 362, 333–335.CrossRefGoogle Scholar
  74. Rosman, K.J.R., W. Chisholm, S. Hong, J.-P. Candelone and C.F. Boutron, 1997: Lead from Carthaginian and Roman Spanish mines isotopically identified in Greenland ice dated from 600 B.C. to 300 A.D. Environ. Sci. Technol. 31, 3413–3416.CrossRefGoogle Scholar
  75. Rosman, K.J.R., R.D. Loss, G.R. Burton, J.R. Moody and N. Bukilic, 2005: Advanced ultraClean Environment (ACE) facility for high sensitivity isotope ratio mass spectrometry, XIII International Conference on Heavy Metals in the Environment, Trinidade, R.B.E., R. Melamed, L.G.S. Sobral and J.P. Barbosa (editors). Brazil: Centro de Tecnologia Mineral, pp. 546–549. Abstract and Proceedings. Contribution #78, pp. 116–119.Google Scholar
  76. Settle, D.M. and C.C. Patterson, 1980: Lead in albacore: Guide to pollution in Americans. Science 207, 1167–1176.CrossRefGoogle Scholar
  77. Vallelonga, P., K. van de Velde, J.-P. Candelone, C. Ly, K.J.R. Rosman, C.F. Boutron, V.I. Morgan and D.J. Mackey, 2002a: Recent advances in measurement of Pb isotopes in polar ice and snow at sub-picogram per gram concentrations using thermal ionisation mass spectrometry. Anal. Chim. Acta, 453, 1–12.CrossRefGoogle Scholar
  78. Vallelonga, P., K. van de Velde, J.-P. Candelone, V.I. Morgan, C.F. Boutron, and K.J.R. Rosman, 2002b: The lead pollution history of Law Dome, Antarctica, from isotopic measurements on ice cores: 1500 AD to 1989 AD. Earth Planet. Sci. Lett. 204, 291–306.CrossRefGoogle Scholar
  79. Vallelonga, P., P. Gabrielli, K.J.R. Rosman, C. Barbante and C.F. Boutron, 2005: A 220 kyr record of Pb isotopes at Dome C, Antarctica from analyses of EPICA ice core. Geophys. Res. Lett. 32, L01706, doi: 10.1029/2004GL021449.CrossRefGoogle Scholar
  80. Van de Velde, K., P. Vallelonga, J.-P. Candelone, K.J.R. Rosman, V. Gaspari, G. Cozzi, C. Barbante, R. Udisti, P. Cescon and C.F. Boutron, 2005: Pb isotope record over one century in snow from Victoria Land, Antarctica. Earth Planet. Sci. Lett. 232, 95–108.CrossRefGoogle Scholar
  81. Vandal, G.M., W. Fitzgerald, C.F. Boutron and J.-P. Candelone, 1993: Variations in mercury deposition to Antarctica over the past 34,000 years. Nature 362, 621–623.CrossRefGoogle Scholar
  82. Von Storch, H., M. Costa-Cabral, C. Hagner, F. Feser, J. Pacyna, E. Pacyna and S. Kolb, 2003: Four decades of gasoline lead emissions and control policies in Europe: A retrospective assessment. Sci. Total. Environ. 311, 151–176.CrossRefGoogle Scholar
  83. Wedepohl, K.H., 1995: The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232.CrossRefGoogle Scholar
  84. Wolff, E.W. and E.D. Suttie, 1994: Antarctic snow record of southern hemispheric lead pollution. Geophys. Res. Lett. 21, 781–784.CrossRefGoogle Scholar
  85. Wolff, E.W., E.D. Suttie and D.A. Peel, 1999: Antarctic snow record of cadmium, copper and zinc content during the twentieth century. Atmos. Environ. 33, 1535–1541.CrossRefGoogle Scholar
  86. Wolff, E.W., H. Fischer, F. Fundel, U. Ruth, B. Twarloh, G.C. Littot, R. Mulvaney, R. Röthlisberger, M. de Angelis, C.F. Boutron, M. Hansson, U. Jonsell, M. Hutterli, F. Lambert, P. Kaufmann, B. Stauffer, T.F. Stocker, J.P. Steffensen, M. Bigler, M.I. Siggaard-Andersen, R. Udisti, S. Becagli, E. Castellano, M. Severi, D. Wagenbach, C. Barbante, P. Gabrielli and V. Gaspari, 2006: Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Claude Boutron
    • 1
    Email author
  • Carlo Barbante
    • 2
  • Sungmin Hong
    • 3
  • Kevin Rosman
    • 4
  • Michael Bolshov
    • 5
  • Freddy Adams
    • 6
  • Paolo Gabrielli
    • 2
    • 7
  • John Plane
    • 8
  • Soon-Do Hur
    • 3
  • Christophe Ferrari
    • 1
  • Paolo Cescon
    • 2
  1. 1.Laboratoire de Glaciologie et Géophysique de l’EnvironnementUniversity Josef Fourier GrenobleSaint Martin d’ HèresFrance
  2. 2.Dipartimento di Scienze AmbientaliUniversita Ca’ Foscari di VeneziaVeneziaItaly
  3. 3.Korea Polar Research InstituteSongdo-dong, IncheonSouth Korea
  4. 4.Department of Imaging and Applied PhysicsCurtin University of TechnologyPerthAustralia
  5. 5.Institute of SpectroscopyRussia Academy of SciencesTroitzkRussia
  6. 6.Department of ChemistryUniversity of AntwerpenWilrijkBelgium
  7. 7.Byrd Polar Research CenterOhio State UniversityColumbusUSA
  8. 8.School of ChemistryUniversity of LeedsLeedsUK

Personalised recommendations