The Role of Clouds in Atmospheric Transport and Chemistry

  • Markus QuanteEmail author


Clouds are ubiquitous in the Earth’s atmosphere. They are important for a multitude of reasons. By intervening with the radiation and energy budget of our planet clouds play a major role in climate and global change (Kiehl and Trenberth 1997; Quante 2004). Furthermore, they possess a key role in the global and regional water cycles (Quante and Matthias 2006). Besides these prominent influences on weather, climate and water availability, clouds are involved in several ways in the distribution and transformation of pollutants in the atmosphere. That clouds play an active role in the processing and cycling of atmospheric substances has long been recognized.


Convective Cloud Cloud Droplet Cloud Amount Cloud Layer Mesoscale Convective System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barrie, L.A., and R.S. Schemenauer, 1989: Wet deposition of heavy metals. In: J.M. Pacyna and B. Ottar, (Eds.), Control and Fate of Atmospheric Trace Metals, NATO-ASI Series, Vol. C 268, Kluwer, Dordrecht, pp. 203–231.CrossRefGoogle Scholar
  2. Barth, M.C., S.-W. Kim, W.C. Skamarock, A.L. Stuart, K.E. Pickering, and L.E. Ott, 2007: Simulations of the redistribution of formaldehyde, formic acid, and peroxides in the 10 July 1996 stratospheric-tropospheric experiment: radiation, aerosols, and ozone deep convection storm. J. Geophys. Res. 112, D13310.CrossRefGoogle Scholar
  3. Bullock, O.R., and K.A. Brehme, 2002: Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results. Atmos. Environ. 36, 2135–2146.CrossRefGoogle Scholar
  4. Ching, K.S., 1982: The role of convective clouds in venting ozone from the mixed layer, Third Joint Conference on the Applications of Air Pollution Meteorology, San Antonio, AMS, Boston, 1982, Preprint volume.Google Scholar
  5. Cotton, W.R., G.D. Alexander, R. Hertenstein, R.L. Walko, R.L. McAnelly, and M. Nicholls, 1995: Cloud venting – A review and some new global annual estimates. Earth Sci. Rev. 39, 169–206.CrossRefGoogle Scholar
  6. Crawford, J.H., D. Davis, G. Chen, R. Shetter, M. Muller, J. Barrick, and J. Olson, 1999: An assessment of cloud effects on photolysis rates: Comparison of experimental and theoretical values. J. Geophys. Res. 104, 5725–5734.CrossRefGoogle Scholar
  7. Dickerson, R.R., G.J. Huffman, W.T. Luke, L.J. Nunnermacker, K.E. Pickering, A.C.D. Leslie, C.G. Lindsey, W.G.N. Slinn, T.J. Kelly, P.H. Daum, A.C. Delany, J.P. Greenberg, P.R. Zimmerman, J.F. Boatman, J.D. Ray, and D.H. Stedman, 1987: Thunderstorms: An important mechanism in the transport of air pollutants. Science 235, 460–465.CrossRefGoogle Scholar
  8. Flossmann, A.I., and W. Wobrock, 1996: Venting of gases by convective clouds. J. Geophys. Res. 101(D13), 18639–18649.CrossRefGoogle Scholar
  9. Gidel, L.T., 1983: Cumulus cloud transport of transient tracers. J. Geophys. Res. 88, 6587–6599CrossRefGoogle Scholar
  10. He, J., and R. Balasubramanian, 2009: A study of precipitation scavenging of semivolatile organic compounds in a tropical area. J. Geophys. Res. 114, D12201.CrossRefGoogle Scholar
  11. Heintzenberg, J., and R.J. Charlson (eds), 2009: Clouds in the Perturbed Climate System. The MIT Press, Cambridge, MA, 597 pp.Google Scholar
  12. Houze, R.A., Jr., 2004: Mesoscale convective systems. Rev. Geophys. 42, RG4003.CrossRefGoogle Scholar
  13. Isaac, G.A., P.I. Joe, and P.W. Summers, 1983: The vertical transport and redistribution of pollutants by clouds. Transactions of the APCA Specialty Conference on the Meteorology of Acid Deposition, October 1983, Hartford, Air Pollution Control Association, 496–512.Google Scholar
  14. Keeler, G.J., L.E. Gratz, and K. Al-Wali, 2005: Long-term atmospheric mercury wet deposition at Underhill, Vermont. Ecotoxicology 14, 71–83.CrossRefGoogle Scholar
  15. Kiehl, J.T., and K.E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Am. Met. Soc. 78, 197–208.CrossRefGoogle Scholar
  16. Lawrence, M., and Rasch, P.J., 2005: Tracer transport in deep convective updrafts: Plume ensemble versus bulk formulations, J. Atmos. Sci. 62, 2880–2894.CrossRefGoogle Scholar
  17. Lelieveld J., and P.J. Crutzen, 1991: The role of clouds in tropospheric photochemistry. J. Atmos. Chem. 12, 229–267.CrossRefGoogle Scholar
  18. Liang, J. and D.J. Jacob, 1997: Effect of aqueous phase cloud chemistry on tropospheric ozone, J. Geophys. Res. 102, 5993–6001.CrossRefGoogle Scholar
  19. Ligocki, M.P., C. Leuenberger, and J.F. Pankow, 1985: Trace organic compounds in rain – II. Gas scavenging of neutral organic compounds. Atmos. Environ. 19, 1609–1617.CrossRefGoogle Scholar
  20. Lin, C., and S. Pekhonen, 1999. The chemistry of atmospheric mercury: A review. Atmos. Environ. 24, 4125–4137.Google Scholar
  21. Lin, C.J., P. Pongprueksa, S.E. Lindberg, S.O. Pehkonen, D. Byun, and C. Jang, 2006: Scientific uncertainties in atmospheric mercury models I: Model science evaluation. Atmos. Environ. 40, 2911–2928.CrossRefGoogle Scholar
  22. Liou K.N., 1992: Radiation and Cloud Processes in the Atmosphere, Oxford University Press, New York, 487 pp.Google Scholar
  23. Liu, H., J.H. Crawford, R.B. Pierce, P. Norris, S.E. Platnick, G. Chen, J.A. Logan, R.M. Yantosca, M.J. Evans, C. Kittaka, Y. Feng, and X. Tie, 2006: Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model. J. Geophys. Res. 111, D20303.CrossRefGoogle Scholar
  24. Liu, H., J.H. Crawford, D.B. Considine, S. Platnick, P.M. Norris, B.N. Duncan, R.B. Pierce, G. Chen, and R.M. Yantosca, 2009: Sensitivity of photolysis frequencies and key tropospheric oxidants in a global model to cloud vertical distributions and optical properties. J. Geophys. Res. 114, D10305.CrossRefGoogle Scholar
  25. Madronich, S., 1987: Photodissociation in the atmosphere, 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. 92, 9740–9752.CrossRefGoogle Scholar
  26. Miller, E.K., A. Vanarsdale, G.J. Keeler, A. Chalmers, L. Poissant, N.C. Kamman, and R. Brulotte, 2005: Estimation and mapping of wet and dry mercury deposition across northeastern North America. Ecotoxicology 14, 53–70.CrossRefGoogle Scholar
  27. Mircea, M., S. Stefan, and S. Fuzzi, 2000: Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distribution. Atmospheric Environment 34, 5169–5174.CrossRefGoogle Scholar
  28. Neu, J.L., Prather, M.J., and Penner, J.E., 2007: Global atmospheric chemistry: Integrating over fractional cloud cover. J. Geophys. Res. 112, D11306.CrossRefGoogle Scholar
  29. Norris, J.R. and A. Slingo, 2009: Trends in observed cloudiness and Earth's radiation budget: what do we not know and what do we need to know? In: Clouds in the Perturbed Climate System, ed. by J. Heintzenberg and R.J. Charlson, MIT Press, 17–36.Google Scholar
  30. Offenberg, J.H., and J.E. Baker, 2002: Precipitation scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons along an urban to over-water transect. Environ. Sci. Technol. 36, 3763–3771.CrossRefGoogle Scholar
  31. Poster, D.L., and J.E. Baker, 1996: Influence of submicron particles on hydrophobic organic contaminants in precipitation. 2. Scavenging of polycyclic aromatic hydrocarbons by precipitation. Environ. Sci. Technol. 30, 349–354.CrossRefGoogle Scholar
  32. Pruppacher, H.R., and J.D. Klett, 1997: Microphysics of Clouds and Precipitation, Kluwer, Dordrecht, 954 pp.Google Scholar
  33. Quante, M., 2004: The role of clouds in the climate system, J. Phys. IV 121, 61–86.Google Scholar
  34. Quante, M., and V. Matthias, 2006: Water in the Earth’s atmosphere. J. Phys. IV, 139, 37–61.Google Scholar
  35. Rossow W.B. and R.A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Am. Meteor. Soc. 80, 2261–2287.CrossRefGoogle Scholar
  36. Sahu, S.K., G.G. Pandit, and S. Sadasivan, 2004: Precipitation scavenging of polycyclic aromatic hydrocarbons in Mumbai, India. Sci. Total Environ. 318, 245–249.CrossRefGoogle Scholar
  37. Sakata, M., and K. Marumoto, 2005: Wet and dry deposition fluxes of mercury in Japan. Atmos. Environ. 39, 3139–3146.CrossRefGoogle Scholar
  38. Schade, N.H., A. Macke, H. Sandmann and C. Stick, 2007: Enhanced solar global irradiance during cloudy sky conditions. Meteorol. Z. 16(3), 195–303.CrossRefGoogle Scholar
  39. Seigneur, C., K. Lohman, K. Vijayaraghavan, and R. Shia, 2003: Contributions of global and regional sources to mercury deposition in New York State. Environ. Pollut. 123, 365–373.CrossRefGoogle Scholar
  40. Seinfeld J.H., and S.N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn. Wiley, New York, 1203 pp.Google Scholar
  41. Sportisse, B., 2007: A review of parameterizations for modelling dry deposition and scavenging of radionuclides. Atmos. Environ. 41, 2683–2698.CrossRefGoogle Scholar
  42. Stull, R.B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteorol. 24, 49–56.CrossRefGoogle Scholar
  43. Tie, X., S. Madronich, S. Walters, R. Zhang, P. Rasch, and W. Collins, 2003: Effect of clouds on photolysis and oxidants in the troposphere, J. Geophys. Res. 108(D20), 4642.CrossRefGoogle Scholar
  44. Tost, H., M.G. Lawrence, C. Brühl, P. Jöckel, The GABRIEL Team, and The SCOUT-O3-DARWIN/ACTIVE Team, 2010: Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging. Atmos. Chem. Phys. 10, 1931–1951.Google Scholar
  45. Tsai, W., Y. Cohen, H. Sakugawa and I.R. Kaplan, 1991: Dynamic partitioning of semivolatile organics in gas/particle/rain phases during rain scavenging. Environ. Sci. Technol. 25, 2012–2023.CrossRefGoogle Scholar
  46. Voulgarakis, A., O. Wild, N.H. Savage, G.D. Carver, and J.A. Pyle, 2009: Clouds, photolysis and regional tropospheric ozone budgets. Atmos. Chem. Phys. 9, 8235–8246.CrossRefGoogle Scholar
  47. Wang, C., and R.G. Prinn, 2000: On the roles of deep convective clouds in tropospheric chemistry. J. Geophys. Res. 105, 22269–22298.CrossRefGoogle Scholar
  48. Warneck, P., 1991: Chemical reactions in clouds. Fresenius J. Anal. Chem. 340, 585–590.CrossRefGoogle Scholar
  49. Warren S.G. and Hahn C.J., 2002: Clouds/climatology. In J. Holton, J. Pyle and J. Curry (Eds.) Encyclopedia of Atmospheric Sciences, Academic, San Diego, pp. 476–483.Google Scholar
  50. Yang, H., and H. Levy, 2004: Sensitivity of photodissociation rate coefficients and O3 photochemical tendencies to aerosols and clouds, J. Geophys. Res. 109, D24301.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Environmental Chemistry, Helmholtz-Zentrum GeesthachtInstitut of Coastal ResearchGeesthachtGermany

Personalised recommendations