The Global Distribution of Aerosols

  • Hartmut GraßlEmail author


The radiation budget of planet Earth, given the solar irradiance at the top of the atmosphere, is to a large extent determined by minor constituents of the atmosphere. Less than three thousandths of its mass – including water vapour, cloud water and cloud ice – regulate how much solar radiation reaches the surface and from where in the atmosphere or on the surface the same amount of energy as absorbed globally from solar irradiance is radiated back to space in the thermal infrared. The least understood part of the Earth’s radiation budget and its changes is related to an extremely small fraction of the minor constituents, the aerosol particles, liquid or solid particles suspended in air in the size range from about a nanometer to a few micrometers. At a typical mass mixing ratio of 10 μg/m3 in the free troposphere aerosol particles constitute only about 10−10 of the mass or 10−13 of the volume fraction of tropospheric air.


Aerosol Particle Aerosol Optical Depth Solar Irradiance Cloud Droplet Dust Devil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Calisesi, Y., R.-M. Bonnet, L. Gray, J. Langen, M. Lockwood, M. (eds), 2007: Solar Variability and Planetary Climates, Springer, Berlin, 476pp, ISBN 978-0-387-48339-9.Google Scholar
  2. Devasthale, A., O. Krüger, and H. Graßl, 2006: Impact of ship emissions on cloud properties over coastal areas. Geophys. Res. Lett. 33, 1–4.CrossRefGoogle Scholar
  3. Eschelbach, G., 1973: Computations of the influence of aerosols on the atmospheric radiation balance in the visible spectrum. Beitr. Phys. Atmos. 46, 249–261.Google Scholar
  4. IPCC, 2001: Climate Change 2001: The Scientific Basis. WMO/UNEP Intergovernmental Panel on Climate Change, Third Assessment Report, Volume I.Google Scholar
  5. IPCC, 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  6. Kaufman, Y.J., 2006: Satellite observations of natural and anthropogenic aerosol effects on clouds and climate. Space Sci. Rev. 125, 139–147.CrossRefGoogle Scholar
  7. Kaufman, Y.J., O. Boucher, D. Tanré, M. Chin, L.A. Remer, and T. Takemura, 2005: Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett. 32, 4 pp.CrossRefGoogle Scholar
  8. Kaufman, Y. J., G. P. Gobbi, and I. Koren, 2006: Aerosol climatology using a tunable spectral variability cloud screening of AERONET data. Geophy. Res. Lett. 33, L07817, doi: 10.1029/2005GL025478
  9. Krüger, O., and H. Graßl, 2002: The indirect aerosol effect over Europe. Geophys. Res. Lett. 29, 4 pp.CrossRefGoogle Scholar
  10. Krüger, O., and H. Graßl, 2004: Albedo reduction by absorbing aerosols over China. Geophys. Res. Lett. 31, 4 pp.Google Scholar
  11. Ramanathan, V., C. Chung, D. Kim, T. Bettge, L. Buja, J.T. Kiehl, W.M. Washington, Q. Fu, D.R. Sikka, and M. Wild, 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. PNAS 102, 5326–5333.CrossRefGoogle Scholar
  12. Rosenfeld, D., 2006: Aerosol-cloud interactions control of earth radiation and latent heat release budgets. Space Sci. Rev. 23, 149–157.Google Scholar
  13. Twomey, S., 1972: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 29, 1405–1412.CrossRefGoogle Scholar
  14. Twomey, S., 1977: Atmospheric Aerosols. Elsevier/North-Holland, Amsterdam, 302 pp.Google Scholar
  15. Yamamoto, G., and M. Tanaka, 1972: Increase of global albedo due to air pollution. J. Atmos. Sci. 29, 1405–1412.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Max-Planck Institute for MeteorologyHamburgGermany

Personalised recommendations