Advertisement

Aerosols as Transport Vehicles of Persistent Pollutants

  • Volker MatthiasEmail author
Chapter
  • 893 Downloads

Abstract

Aerosol particles belong to the most important constituents of the Earth’s atmosphere. Cloud formation and cloud properties strongly depend on the amount and the type of atmospheric aerosol particles. By scattering and absorbing solar radiation they have a large impact on the global radiation budget and locally on the visibility. Finally, they consist of various chemical compounds including harmful or even toxic substances. The atmospheric lifetime of aerosols strongly depends on meteorological conditions. On the one hand, they are efficiently washed out during rain events. On the other hand they accumulate in the atmosphere under dry conditions and they can be transported over long distances, particularly if they have been mixed into higher altitudes before. Furthermore persistent pollutants like lead and other heavy metals, polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are often bound to these particles and are transported with them. Their regional distribution and deposition can only be understood together with the knowledge about atmospheric aerosol particles.

Keywords

Aerosol Particle Aerosol Optical Depth Cloud Droplet Secondary Organic Aerosol Aerosol Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen, J.O., K.M. Dookeran, K.A. Smith, A.F. Sarofim, K. Taghizadeh, and A.L. Lafleur, 1996: Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts. Environ. Sci. Technol. 30, 1023–1031.CrossRefGoogle Scholar
  2. Benkovitz, C.M., M. T. Scholtz, J. Pacyna, L. Tarrason, J. Dignon, E.C. Voldner, P.A. Spiro, J.A. Logan, and T.E. Graedel, 1996: Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. Atmos. 101, 29239–29253.CrossRefGoogle Scholar
  3. Bond, T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J.H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos., 109, D14203.CrossRefGoogle Scholar
  4. Bösenberg, J., V. Matthias, A. Amodeo, V. Amoiridis, A. Ansmann, J.M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlsson, A. Chaikovsky, G. Chourdakis, A. Comerón, F.D. Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, A. Mekler, I. Mironova, V. Mitev, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R.M. Perrone, R. Persson, D.P. Resendes, V. Rizi, F. Rocadenbosch, J.A. Rodrigues, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewski, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos, 2003: A European aerosol research Lidar network to establish an aerosol climatology. MPI-Report 348, Max-Planck-Institut für Meteorologie, Hamburg.Google Scholar
  5. Bouwman, A.F., D.S. Lee, W.A.H. Asman, F.J. Dentener, K.W. Van der Hoek, and J.G.J. Olivier, 1997: A global high-resolution emission inventory for ammonia. Global Biogeochem. Cycles 11, 561–587.CrossRefGoogle Scholar
  6. Committee on Pyrene and Selected Analogues, Board on Toxicology and Environmental Health Hazards, 1983: Polycyclic Aromatic Hydrocarbons: Evaluation of Sources and Effects. Natl. Acad. Sci. ISBN: 978-0-309-07758-3.Google Scholar
  7. Dentener, F., S. Kinne, T. Bond, O. Boucher, J. Cofala, S. Generoso, P. Ginoux, S. Gong, J.J. Hoelzemann, A. Ito, L. Marelli, J.E. Penner, J. Putaud, C. Textor, M. Schulz, G.R. van der Werf, and J. Wilson, 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys. 6, 4321–4344.CrossRefGoogle Scholar
  8. Fuzzi, S., M. Andreae, B. Huebert, M. Kulmala, T. Bond, M. Boy, S. Doherty, A. Guenther, M. Kanakidou, K. Kawamura, V.-M. Kerminen, U. Lohmann, L. Russell, and U. Pöschl, 2006: Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 6, 2017–2038.CrossRefGoogle Scholar
  9. Gong, S.L., L.A. Barrie, and M. Lazare, 2002: Canadian aerosol module (cam): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models – 2. Global sea-salt aerosol and its budgets. J. Geophys. Res. Atmos. 107, 4779.CrossRefGoogle Scholar
  10. Haywood, J. and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 38(4), 513–543.CrossRefGoogle Scholar
  11. Holben, B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998: Aeronet – a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1–16.CrossRefGoogle Scholar
  12. Jacobson, M.Z., 1999: Fundamentals of Atmospheric Modelling. Cambridge University Press, Cambridge, UK.Google Scholar
  13. Kanakidou, M., J. Seinfeld, S. Pandis, I. Barnes, F. Dentener, M. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. Nielsen, E. Swietlicki, J. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. Moortgat, R. Winterhalter, C. Myhre, K. Tsigaridis, E. Vignati, E. Stephanou, and J. Wilson, 2005: Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 5, 1053–1123.CrossRefGoogle Scholar
  14. Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S.E. Bauer, T. Berntsen, T.F. Berglen, O. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J.E. Hendricks, M. Herzog, L. Horowitz, L. Isaksen, T. Iversen, A. Kirkavag, S. Kloster, D. Koch, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J.E. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, and X. Tie, 2006: An Aerocom initial assessment – optical properties in aerosol component modules of global models. Atmos. Chem. Phys. 6, 1815–1834.CrossRefGoogle Scholar
  15. Kulmala, M., 2003: How particles nucleate and grow. Science, 302, 1000–1001.CrossRefGoogle Scholar
  16. Liousse, C., J.E. Penner, C. Chuang, J.J. Walton, H. Eddleman, and H. Cachier, 1996: A global three-dimensional model study of carbonaceous aerosols. J. Geophys. Res. Atmos. 101, 19411–19432.CrossRefGoogle Scholar
  17. Malm, W.C., B.A. Schichtel, M.L. Pitchford, L.L. Ashbaugh, and R.A. Eldred, 2004: Spatial and monthly trends in speciated fine particle concentration in the United States. J. Geophys. Res., 109, D03306, doi: 10.1029/2003JD003739
  18. Matthias, V., D. Balis, J. Bösenberg, R. Eixmann, M. Iarlori, L. Komguem, I. Mattis, A. Papayannis, G. Pappalardo, M.R. Perrone, and X. Wang, 2004: Vertical aerosol distribution over Europe: Statistical analysis of Raman Lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations. J. Geophys. Res. Atmos. 109(18), D18201.CrossRefGoogle Scholar
  19. Penner, J.E., M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, and G. Pitari, 2001: Aerosols, their direct and indirect effects. In: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaosu, D., editors, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), chapter 5, pages 289–348. Cambridge University Press, Cambridge.Google Scholar
  20. Pruppacher, H.R., and J.D. Klett, 1997: Microphysics of Clouds and Precipitation, 2nd edition. Kluwer, Dordrecht, The Netherlands. ISBN 0-7923-4211-9.Google Scholar
  21. Putaud, J.-P., F. Raes, R. Van Dingenen, E. Bruggemann, M.C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, C. Huglin, P. Laj, G. Lorbeer, W. Maenhaut, N. Mihalopoulos, K. Müller, X. Querol, S. Rodriguez, J. Schneider, G. Spindler, H. ten Brink, K. Torseth, and A. Wiedensohler, 2004: European aerosol phenomenology 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38, 2579–2595.CrossRefGoogle Scholar
  22. Putaud, J.-P., R. Van Dingenen, M. Mangoni, A. Virkkula, F. Raes, H. Maring, J.M. Prospero, E. Swietlicki, O.H. Berg, R. Hillamo, and T. Mäkelä, 2000: Chemical mass closure and assessment of the origin of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ace-2. Tellus 52, 147–168.Google Scholar
  23. Richter, H., and J.B. Howard, 2000: Formation of polycyclic aromatic hydrocarbons and their growth to soot – a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26, 565–608.CrossRefGoogle Scholar
  24. Tang, I.N., W.T. Wong, and H.R. Munkelwitz, 1981: The relative importance of atmospheric sulfates and nitrates in visibility reduction. Atmos. Environ. 15, 2463–2471.CrossRefGoogle Scholar
  25. van Dingenen, R., F. Raes, J.P. Putaud, U. Baltensperger, A. Charron, M.C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, H.C. Hansson, R.M. Harrison, C. Huglin, A.M. Jones, P. Laj, G. Lorbeer, W. Maenhaut, F. Palmgren, X. Querol, S. Rodriguez, J. Schneider, H. ten Brink, P. Tunved, K. Torseth, B. Wehner, E. Weingartner, A. Wiedensohler, and P. Wahlin, 2004: A European aerosol phenomenology-1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38, 2561–2577.CrossRefGoogle Scholar
  26. Wandinger, U., I. Mattis, M. Tesche, A. Ansmann, J. Bösenberg, A. Chaikovski, V. Freudenthaler, L. Komguem, H. Linne, V. Matthias, J. Pelon, L. Sauvage, P. Sobolewski, G. Vaughan, and M. Wiegner, 2004: Air mass modification over Europe: EARLINET aerosol observations from Wales to Belarus. J. Geophys. Res. Atmos. 109(24), D24205.CrossRefGoogle Scholar
  27. Wang, Y.H., D.J. Jacob, and J.A. Logan, 1998: Global simulation of tropospheric O3-NOx hydrocarbon chemistry 1. Model formulation. J. Geophys. Res. Atmos. 103(D9), 10713–10725.CrossRefGoogle Scholar
  28. Wiedinmyer, C., A. Guenther, P. Harley, N. Hewitt, C. Geron, P. Artaxo, R. Steinbrecher, and R. Rasmussen, 2004: Global organic emissions from vegetation. In Granier, C., Artaxo, P., and Reeves, C., editors, Emissions of Atmospheric Trace Compounds, pages 115–170. Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  29. Wolf, M.E. and G.M. Hidy, 1997: Aerosols and climate: Anthropogenic emissions and trends for 50 years J. Geophys. Res. Atmos. 102(D10), 11113–11121.CrossRefGoogle Scholar
  30. Zender, C.S., 2004: Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. EoS 85, 509–512.CrossRefGoogle Scholar
  31. Zhang, X.Y., Y.Q. Wang, X.C. Zhang, W. Guo, T. Niu, S.L. Gong, Y. Yin, P. Zhao, J.L. Jin, and M. Yu, 2008: Aerosol monitoring at multiple locations in China: contributions of EC and dust to aerosol light absorption. Tellus B 60, 647-656.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Environmental Chemistry, Helmholtz-Zentrum GeesthachtInstitut of Coastal ResearchGeesthachtGermany

Personalised recommendations