Advertisement

Chemical Transport Modelling

  • Armin AulingerEmail author
Chapter
  • 894 Downloads

Abstract

A model in the here discussed form is first of all a description of complex processes in nature. This starts with a description by words or graphics (conceptual model) and goes up to complex mathematical or numerical simulation models that run on supercomputers. The complexity of a model is determined by several factors. It can be simply limited by computational resources which involves the questions if enough computer power or storage media for the data output is available or if there are appropriate tools available to make sure the data can be evaluated in a reasonable way. Developing a model can be seen as an interactive and iterative process. You can use a model to reproduce and understand experimental findings whereas at the same time experimental results are used to refine models. The most important point to consider before you build or acquire a model is the purpose the model should serve. Conceptual models e.g., could be used to describe physical or chemical processes in the atmosphere be it in lectures or for scientific discussions of processes. Mathematical models allow a more profound investigation of physical and chemical processes. Ultimately, models that are used to simulate the dispersion of substances over e.g., the European continent or to predict ambient air concentrations and deposition rates in a high spatial and temporal resolution can be very comprehensive. They often require a lot of input variables (e.g., meteorology, emissions) and parameters (e.g., physical–chemical constants). Insufficient knowledge of these inputs may lead to erroneous results or misleading interpretation of the results. The repertory of numerical simulation models ranges from simple box models that can e.g., represent a closed system and contain only one substance in one compartment and thus require little computer power to elaborate three-dimensional grid models containing plenty of substances involved in a number of physical and chemical processes. A scientist who develops or applies a model has to balance the complexity and expense of the model with the available input variables and parameters, the available computational resources and the demanded precision of the model results (Jacobson 2005).

Keywords

Planetary Boundary Layer Emission Inventory Deposition Flux Planetary Boundary Layer Height Canopy Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aulinger, A., V. Matthias, and M. Quante, 2007: Introducing a partitioning mechanism for PAHs into the Community Multiscale Air Quality modelling system and its application to simulating the transport of benzo(a)pyrene over Europe. J. Appl. Meteorol. 46, 1718–1730.CrossRefGoogle Scholar
  2. Baer, M., and K. Nester, 1992: Parametrization of trace gas dry deposition velocities for a regional mesoscale diffusion-model. Ann. Geophys. 10, 912–923.Google Scholar
  3. Beyer, A., and M. Matthies, 2001: Criteria for Atmospheric Transport Potential and Persistence of Pesticides and Industrial Chemicals. Final Report, German Federal Environmental Agency, Berlin, Germany.Google Scholar
  4. Bewersdorff, I., A. Aulinger, V. Matthias, and M. Quante, 2009: The effect of temporal resolution of PAH emission data on transport and deposition patterns simulated with the Community Multiscale Air Quality modelling system (CMAQ). Meteorol. Z. 18, 41–53.CrossRefGoogle Scholar
  5. Binkowski, F., and S. Roselle, 2003: Models-3 community multiscale air quality (CMAQ) model aerosol components: 1. model description. J. Geophys. Res. Atmos. 108, 1–18.CrossRefGoogle Scholar
  6. Binkowski, F., and U. Shankar, 1995: The regional particulate matter model. 1. Model description and preliminary results. J. Geophys. Res. Atmos. 100, 26191–26209.CrossRefGoogle Scholar
  7. Brandes, L.J., H. den Hollander, and D. van de Ment, 1996: SimpleBox2.0: A nested multimedia fate model for evaluating the environmental fate of chemicals (719101029), Technical report, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands.Google Scholar
  8. Byun, D.W., and J.K.S. Ching (Ed.), 1999: Science Algorithms of the EPA Models-3 Community Multi-scale Air Quality (CMAQ) Modelling System (EPA/600/R-99/030), Technical report, United States Environmental Protection Agency, Office of Research and Development, Washington, DC.Google Scholar
  9. Christensen, J.H., 1997: The Danish Eulerian Hemispheric Model – A Three-Dimensional Air Pollution Model Used For The Arctic, Atmospheric Environment 31, 4169–4191.CrossRefGoogle Scholar
  10. Cohen, M., 1997: IJC Review Part 3 (Modeling): Modeling the Atmospheric Transport and Deposition of Persistent Toxic Substances to the Great Lakes. Prepared for the International Joint Commission’s International Air Quality Advisory Board by Mark Cohen, Center for the Biology of Natural Systems (CBNS), Queens College, City University of New York.Google Scholar
  11. Dabdub, D., and J. Seinfeld, 1994: Air quality modelling on massively parallel computers. Atmos. Environ. 28, 1679–1687.CrossRefGoogle Scholar
  12. Dai, J., and D. Rocke, 2000: Modelling spatial variation in area source emissions. J. Agric. Biol. Environ. Stat. 5, 7–21.CrossRefGoogle Scholar
  13. Donahue, N.M., A.L. Robinson, and S.N. Pandis, 2009: Atmospheric organic particulate matter: From smoke to secondary organic aerosol. Atmos. Environ. 43, 94–106.CrossRefGoogle Scholar
  14. Draxler, R.R., and G.D. Hess, 1998: An overview of the HYSPLIT4 modelling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine 47, 295–308.Google Scholar
  15. Esteve, W., Budzinski, H., and Villenave, E., 2006: Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a, Atmospheric Environment 40 (2), 201–211.Google Scholar
  16. Finlayson-Pitts, B.J., and J.N.J. Pitts, 2000: Chemistry of the Upper and Lower Atmosphere, Academic, San Diego.Google Scholar
  17. Friedrich, R., and Reis, S., 2004: Emissions of air pollutants, Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Gao, W., M. Wesely, and P. Doskey, 1993: Numerical modelling of the turbulent-diffusion and chemistry of NOx, O3, isoprene, and other reactive trace gases in and above a forest canopy. J. Geophys. Res. Atmos. 98, 18339–18353.CrossRefGoogle Scholar
  19. Gery, M., G. Whitten, J. Killus, and M. Dodge, 1989: A photochemical kinetics mechanism for urban and regional scale computer modelling. J. Geophys. Res. Atmos. 94, 12925–12956.CrossRefGoogle Scholar
  20. Grell, G., J. Dudhia, and D.R. Stauffer, 1995: A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), Technical report, NCAR, Boulder.Google Scholar
  21. Hansen, K.M., K. Prevedouros, A.J. Sweetman, K.C. Jones, and J.H. Christensen, 2006: A process-oriented inter-comparison of a box model and an atmospheric chemistry transport model: Insights into model structure using -HCH as the modeled substance, Atmospheric Environment 40, 2089–2104.CrossRefGoogle Scholar
  22. Hollander, A., F. Sauter, H. den Hollander, M. Huijbregts, A. Ragas, and D. van de Meent, 2007: Spatial variance in multimedia mass balance models: Comparison of LOTOS-EUROS and SimpleBox for PCB-153. Chemosphere 68, 1318–1326.CrossRefGoogle Scholar
  23. Horowitz, L.W., S. Walters, D.L. Mauzerall, L.K. Emmons, P.J. Rasch, C. Granier, X. Tie, J. Lamarque, M.G. Schultz, G.S. Tyndall, J.J. Orlando, and G.P. Brasseur, 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res. 108, 4784.CrossRefGoogle Scholar
  24. Houyoux, M., J. Vukovich, C. Coats, N. Wheeler, and P. Kasibhatla, 2000: Emission inventory development and processing for the Seasonal Model for Regional Air Quality (SMRAQ) project. J. Geophys. Res. Atmos. 105, 9079–9090.CrossRefGoogle Scholar
  25. Huret, N., N. Chaumerliac, H. Isaka, and E. Nickerson, 1994: Influence of different microphysical schemes on the prediction of dissolution of nonreactive gases by cloud droplets and raindrops. J. Appl. Meteorol. 33, 1096–1109.CrossRefGoogle Scholar
  26. Jacobson, M.Z., 2005: Fundamentals of Atmospheric Modelling, Cambridge University Press, New York.CrossRefGoogle Scholar
  27. Jacobson, M.Z., R. Lu, R.B. Turco, and O.B. Toon, 1996: Development and application of a new air pollution modelling system – part I: Gas-phase simulations. Atmos. Environ. 30, 1939–1963.CrossRefGoogle Scholar
  28. Jin, S., and K. Demerjian, 1993: A photochemical box model for urban air quality study. Atmos. Environ. 278, 371–387.Google Scholar
  29. Klasmeier, J., M. Matthies, M. Macleod, K. Fenner, M. Scheringer, M. Stroebe, A. Le Gall, T. McKone, D. Van De Meent, and F. Wania, 2006: Application of multimedia models for screening assessment of long-range transport potential and overall persistence. Environ. Sci. Technol. 40, 53–60.CrossRefGoogle Scholar
  30. Kuhlwein, J., R. Friedrich, N. Kalthoff, U. Corsmeier, F. Slemr, M. Habram, and M. Mollmann-Coers, 2002: Comparison of modelled and measured total CO and NOx emission rates. Atmos. Environ. 36, Special Issue, 53–60.Google Scholar
  31. Kuhn, M., P. Builtjes, D. Poppe, D. Simpson, W. Stockwell, Y. Andersson-Skold, A. Baart,M. Das, F. Fiedler, O. Hov, F. Kirchner, P. Makar, J. Milford, M. Roemer, R. Ruhnke, A. Strand, B. Vogel, and H. Vogel, 1998: Intercomparison of the gas-phase chemistry in several chemistry and transport models. Atmos. Environ. 32, 693–709.CrossRefGoogle Scholar
  32. Kwamena, N.O.A., Staikova, M.G., Donaldson, D.J., George, I.J., and Abbatt, J.P.D., 2007: Role of the aerosol substrate in the heterogeneous ozonation reactions of surfacebound PAHs, Journal of Physical Chemistry A 111, 11050–11058.Google Scholar
  33. Liang, J., and M. Jacobson, 2000: Comparison of a 4000-reaction chemical mechanism with the carbon bond IV and an adjusted carbon bond IV-EX mechanism using SMVGEAR II. Atmos. Environ. 34, 3015–3026.CrossRefGoogle Scholar
  34. Mackay, D., 1991: Multimedia Environmental Models, the Fugacity Approach; Lewis Publishers: Chelsea, MI.Google Scholar
  35. Makar, P., W. Stockwell, and S. Li, 1996: Gas-phase chemical mechanism compression strategies: Treatment of reactants. Atmos. Environ. 30, 831–842.CrossRefGoogle Scholar
  36. Marr, L., and R. Harley, 2002: Modelling the effect of weekday-weekend differences in motor vehicle emissions on photochemical air pollution in central California, Environ. Sci. Technol. 36, 4099–4106.CrossRefGoogle Scholar
  37. Matthias, V., M. Quante, and A. Aulinger, 2008: Determination of the optimum MM5 configuration for long term CMAQ simulations of aerosol bound pollutants in Europe. Environ. Fluid Mech. 9, 91–108.CrossRefGoogle Scholar
  38. Matthias, V., A. Aulinger, and M. Quante, 2009: CMAQ simulations of the benzo(a)pyrene distribution over Europe for 2000 and 2001. Atmos. Environ. 43, 4078–4086.CrossRefGoogle Scholar
  39. Peters, L., C. Berkowitz, G. Carmichael, R. Easter, G. Fairweather, S. Ghan, J. Hales, L. Leung, W. Pennell, F. Potra, R. Saylor, and T. Tsang, 1995: The current state and future-direction of Eulerian models in simulating the tropospheric chemistry and transport of trace species – a review. Atmos. Environ. 29, 189–222.CrossRefGoogle Scholar
  40. Rao, S., J. Pleim, and U. Czapski, 1983: A comparative-study of 2 trajectory models of long-range transport. J. Air Pollut. Control Assoc. 33, 32–41.CrossRefGoogle Scholar
  41. Russell, A., and R. Dennis, 2000: NARSTO critical review of photochemical models and modelling. Atmos. Environ. 34, 2283–2324.CrossRefGoogle Scholar
  42. Scheringer M., F. Wegmann, K. Fenner, and K. Hungerbühler, 2000: Investigation of the Cold Condensation of Persistent Organic Pollutants with a Global Multimedia Fate Model, Environ. Sci. Technol. 34 (9), 1842–1850.CrossRefGoogle Scholar
  43. Shatalov, V., A. Malanichev, T. Berg, and R. Larsen, 2000: EMEP Status report 4/2000: Investigation and Assesment of POP Transboundary Transport and Accumulation in Different Media. Joint report of EMEP Centres: MSC-E and CCC. Part II. MSC-E of EMEP, Krasina pereulok, 16/1, 123056, Moscow, Russia. Url: http://www.msceast.org
  44. Stohl, A., 1998: Computation, accuracy and applications of trajectories – a review and bibliography. Atmos. Environ. 32, 947–966.CrossRefGoogle Scholar
  45. Strand A., and O. Hov, 1996: A model strategy for the simulation of chlorinated hydrocarbon distributions in the global environment. Water, Air and Soil Pollution 86, 283–316.CrossRefGoogle Scholar
  46. Stroebe, M., M. Scheringer, H. Held, and K. Hungerbuhler, 2004: Inter-comparison of multimedia modelling approaches: Modes of transport, measures of long range transport potential and the spatial remote state. Sci. Total Environ. 321, 1–20.CrossRefGoogle Scholar
  47. Struyf, H., and R. Vangrieken, 1993: An overview of wet deposition of micropollutants to the north-sea. Atmos. Environ. Gen. Top. 27, 2669–2687.CrossRefGoogle Scholar
  48. Stull, R.B., 1988: An Introduction to Boundary Layer Meteorology, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  49. Van der Gon, D.H., M. van het Bolscher, A. Visschedijk, and P. Zandveld, 2005: Study of the effectiveness of UNECE Persistent Organic Pollutants Protocol and cost of possible additional measures. Phase I: Estimation of emission reduction resulting from the implementation of the POP Protocol’ (B& O-A R 2005/194), Technical report, TNO, Laan van Westenenk 501, AH Appeldoorn, The Netherlands.Google Scholar
  50. Wania, F., and D. Mackay, 1995: A global distribution model for persistent organic chemicals. Sci. Total Environ. 160/161: 211–232.Google Scholar
  51. Zlatev, Z., J. Christensen, and O. Hov, 1992: A Eulerian air-pollution model for Europe with nonlinear chemistry. J. Atmos. Chem. 15, 1–37.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Environmental Chemistry, Helmholtz-Zentrum GeesthachtInstitute of Coastal ResearchGeesthachtGermany

Personalised recommendations